polar decomposition of a matrix
play

Polar Decomposition of a Matrix Garrett Buffington May 4, 2014 The - PowerPoint PPT Presentation

The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Polar Decomposition of a Matrix Garrett Buffington May 4, 2014 The Polar Decomposition SVD and Polar Decomposition Geometric Concepts


  1. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Polar Decomposition of a Matrix Garrett Buffington May 4, 2014

  2. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Table of Contents The Polar Decomposition 1 What is it? Square Root Matrix The Theorem

  3. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Table of Contents The Polar Decomposition 1 What is it? Square Root Matrix The Theorem SVD and Polar Decomposition 2 Polar Decomposition from SVD Example Using SVD

  4. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Table of Contents The Polar Decomposition 1 What is it? Square Root Matrix The Theorem SVD and Polar Decomposition 2 Polar Decomposition from SVD Example Using SVD Geometric Concepts 3 Motivating Example Rotation Matrices P and r

  5. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Table of Contents The Polar Decomposition 1 What is it? Square Root Matrix The Theorem SVD and Polar Decomposition 2 Polar Decomposition from SVD Example Using SVD Geometric Concepts 3 Motivating Example Rotation Matrices P and r Applications 4 Iterative methods for U

  6. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Table of Contents The Polar Decomposition 1 What is it? Square Root Matrix The Theorem SVD and Polar Decomposition 2 Polar Decomposition from SVD Example Using SVD Geometric Concepts 3 Motivating Example Rotation Matrices P and r Applications 4 Iterative methods for U Conclusion 5

  7. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion What is it? Definition (Right Polar Decomposition) The right polar decomposition of a matrix A ∈ C m × n m ≥ n has the form A = UP where U ∈ C m × n is a matrix with orthonormal columns and P ∈ C n × n is positive semi-definite.

  8. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion What is it? Definition (Right Polar Decomposition) The right polar decomposition of a matrix A ∈ C m × n m ≥ n has the form A = UP where U ∈ C m × n is a matrix with orthonormal columns and P ∈ C n × n is positive semi-definite. Definition (Left Polar Decomposition) The left polar decomposition of a matrix A ∈ C n × m m ≥ n has the form A = HU where H ∈ C n × n is positive semi-definite and U ∈ C n × m has orthonormal columns.

  9. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Square Root of a Matrix Theorem (The Square Root of a Matrix) If A is a normal matrix then there exists a positive semi-definite matrix P such that A = P 2 .

  10. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Square Root of a Matrix Theorem (The Square Root of a Matrix) If A is a normal matrix then there exists a positive semi-definite matrix P such that A = P 2 . Proof. Suppose you have a normal matrix A of size n . Then A is orthonormally diagonalizable. This means that there is a unitary matrix S and a diagonal matrix B whose diagonal entries are the eigenvalues of A so that A = SBS ∗ where S ∗ S = I n . Since A is normal the diagonal entries of B are all positive, making B positive semi-definite as well. Because B is diagonal with real, non-negative entries we can easily define a matrix C so that the diagonal entries of C are the square roots of the eigenvalues of A . This gives us the matrix equality C 2 = B . Define P with the equality P = SCS ∗ .

  11. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion The Theorem Definition ( P ) √ A ∗ A where A ∈ C m × n . The matrix P is defined as

  12. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion The Theorem Definition ( P ) √ A ∗ A where A ∈ C m × n . The matrix P is defined as Theorem (Right Polar Decomposition) For any matrix A ∈ C m × n , where m ≥ n, there is a matrix U ∈ C m × n with orthonormal columns and a positive semi-definite matrix P ∈ C n × n so that A = UP.

  13. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example A     3 8 2 14 38 26  A ∗ A = A = 2 5 7 38 105 75    1 4 6 25 76 89

  14. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example A     3 8 2 14 38 26  A ∗ A = A = 2 5 7 38 105 75    1 4 6 25 76 89 S , S − 1 , and C   1 1 1 S = − 0 . 3868 2 . 3196 2 . 8017   0 . 0339 − 3 . 0376 2 . 4687   0 . 8690 − 0 . 3361 0 . 0294 S − 1 = 0 . 0641 0 . 1486 − 0 . 1946   0 . 0669 0 . 1875 0 . 1652   0 . 4281 0 0 C = 0 4 . 8132 0   0 0 13 . 5886

  15. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example P   1 . 5897 3 . 1191 1 . 3206 √ A ∗ A = S ∗ CS − 1 = P = 3 . 1191 8 . 8526 4 . 1114   1 . 3206 4 . 1114 8 . 3876

  16. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example P   1 . 5897 3 . 1191 1 . 3206 √ A ∗ A = S ∗ CS − 1 = P = 3 . 1191 8 . 8526 4 . 1114   1 . 3206 4 . 1114 8 . 3876 U   0 . 3019 0 . 9175 − 0 . 2588 U = 0 . 6774 − 0 . 0154 0 . 7355   − 0 . 6708 0 . 3974 0 . 6262

  17. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example P   1 . 5897 3 . 1191 1 . 3206 √ A ∗ A = S ∗ CS − 1 = P = 3 . 1191 8 . 8526 4 . 1114   1 . 3206 4 . 1114 8 . 3876 U   0 . 3019 0 . 9175 − 0 . 2588 U = 0 . 6774 − 0 . 0154 0 . 7355   − 0 . 6708 0 . 3974 0 . 6262 A     1 . 5897 3 . 1191 1 . 3206 0 . 3019 0 . 9175 − 0 . 2588 UP = 3 . 1191 8 . 8526 4 . 1114 0 . 6774 − 0 . 0154 0 . 7355     1 . 3206 4 . 1114 8 . 3876 − 0 . 6708 0 . 3974 0 . 6262

  18. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Polar Decomposition from SVD Theorem (SVD to Polar Decomposition) For any matrix A ∈ C m × n , where m ≥ n, there is a matrix U ∈ C m × n with orthonormal columns and a positive semi-definite matrix P ∈ C n × n so that A = UP.

  19. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Polar Decomposition from SVD Theorem (SVD to Polar Decomposition) For any matrix A ∈ C m × n , where m ≥ n, there is a matrix U ∈ C m × n with orthonormal columns and a positive semi-definite matrix P ∈ C n × n so that A = UP. Proof. A = U S SV ∗ = U S I n SV ∗ = U S V ∗ VSV ∗ = UP

  20. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example Using SVD Give Sage our A and ask to find the SVD SVD   3 8 2 A = 2 5 7   1 4 6

  21. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example Using SVD Give Sage our A and ask to find the SVD SVD   3 8 2 A = 2 5 7   1 4 6 Components   0 . 5778 0 . 8142 0 . 0575 U S = 0 . 6337 0 . 4031 0 . 6602   0 . 5144 0 . 4179 0 . 7489   13 . 5886 0 0 S = 0 4 . 8132 0   0 0 0 . 4281   0 . 2587 0 . 2531 0 . 9322 0 . 7248 0 . 5871 0 . 3605 V =   0 . 6386 0 . 7689 0 . 0316

  22. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example Using SVD U U = U S V ∗     0 . 5778 0 . 8142 0 . 0575 − 0 . 2587 − 0 . 7248 − 0 . 6386 = 0 . 6337 0 . 4031 0 . 6602 0 . 2531 0 . 5871 − 0 . 7689     0 . 5144 0 . 4179 0 . 7489 − 0 . 9322 0 . 3605 − 0 . 0316  0 . 3019 0 . 9175 − 0 . 2588  = 0 . 6774 − 0 . 0154 0 . 7355   − 0 . 6708 0 . 3974 0 . 6262

  23. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Example Using SVD U U = U S V ∗     0 . 5778 0 . 8142 0 . 0575 − 0 . 2587 − 0 . 7248 − 0 . 6386 = 0 . 6337 0 . 4031 0 . 6602 0 . 2531 0 . 5871 − 0 . 7689     0 . 5144 0 . 4179 0 . 7489 − 0 . 9322 0 . 3605 − 0 . 0316  0 . 3019 0 . 9175 − 0 . 2588  = 0 . 6774 − 0 . 0154 0 . 7355   − 0 . 6708 0 . 3974 0 . 6262 P P = VSV ∗       0 . 2587 0 . 2531 0 . 9322 13 . 5886 0 0 − 0 . 2587 − 0 . 7248 − 0 . 6386 = 0 . 7248 0 . 5871 0 . 3605 0 4 . 8132 0 0 . 2531 0 . 5871 − 0 . 7689       0 . 6386 0 . 7689 0 . 0316 0 0 0 . 4281 − 0 . 9322 0 . 3605 − 0 . 0316   1 . 5897 3 . 1191 1 . 3206 = 3 . 1191 8 . 8526 4 . 1114   1 . 3206 4 . 1114 8 . 3876

  24. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Geometry Concepts Matrices A = UP

  25. The Polar Decomposition SVD and Polar Decomposition Geometric Concepts Applications Conclusion Geometry Concepts Matrices A = UP Complex Numbers z = re i θ

Recommend


More recommend