Logarithmic derivatives of densities for jump processes Atsushi TAKEUCHI Osaka City University (JAPAN) June 30, 2009 City University of Hong Kong Workshop on ”Stochastic Analysis and Finance” (June 29 - July 3, 2009) A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 1 / 25
Preliminaries dν : the L´ evy measure on R 0 := R \{ 0 } A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 2 / 25
Preliminaries dν : the L´ evy measure on R 0 := R \{ 0 } ∫ ∫ | θ | p dν < ∞ for any p ≥ 1 , | θ | dν + | θ |≤ 1 | θ | > 1 ∫ ( | θ/ρ | 2 ∧ 1 ) ρ α there exists α > 0 such that lim inf dν > 0 , ρ ↘ 0 R 0 there exists a C 1 -density g ( θ ) such that lim | g ( θ ) | = 0 . | θ |→∞ A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 2 / 25
Preliminaries dν : the L´ evy measure on R 0 := R \{ 0 } ∫ ∫ | θ | p dν < ∞ for any p ≥ 1 , | θ | dν + | θ |≤ 1 | θ | > 1 ∫ ( | θ/ρ | 2 ∧ 1 ) ρ α there exists α > 0 such that lim inf dν > 0 , ρ ↘ 0 R 0 there exists a C 1 -density g ( θ ) such that lim | g ( θ ) | = 0 . | θ |→∞ a 0 ( ε, y ) , a ( ε, y ) ∈ C 1 , ∞ 1+ ,b ( R × R ) b ( ε, y, θ ) ∈ C 1 , ∞ , ∞ ( R × R × R 0 ) 1+ ,b � 1 + b ′ ( ε, y, θ ) � > 0 , � � y ∈ R inf inf | θ |↘ 0 b ( ε, y, θ ) = 0 lim θ ∈ R 0 y ∈ R a ( ε, y ) 2 > 0 , θ ∈ R 0 ∂ θ b ( ε, y, θ ) 2 > 0 inf y ∈ R inf inf A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 2 / 25
Example 1.1 Let a, b, c > 0 , and 0 ≤ β < 1 . Define dθ { } e bθ I ( θ< 0) + e − cθ I ( θ> 0) dν = a | θ | 1+ β which is a special case of CGMY process. A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 3 / 25
Example 1.1 Let a, b, c > 0 , and 0 ≤ β < 1 . Define dθ { } e bθ I ( θ< 0) + e − cθ I ( θ> 0) dν = a | θ | 1+ β which is a special case of CGMY process. In particular, gamma process: b = + ∞ , β = 0 variance gamma process: β = 0 tempered stable process: b = + ∞ , 0 < β < 1 inverse Gaussian process: b = + ∞ , β = 1 / 2 . A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 3 / 25
For each ( ε, x ) ∈ R 2 , consider the stochastic differential equation: ✓ ✏ ∫ dx t = a 0 ( ε, x t ) dt + a ( ε, x t ) ◦ dW t + b ( ε, x t − , θ ) dJ, x 0 = x R 0 ✒ ✑ { W t ; t ∈ [0 , T ] } : 1 -dimensional Brownian motion dJ : the Poisson random measure on [0 , T ] × R 0 dt dν : the intensity d ˜ J = dJ − dt dν, dJ = I ( | θ |≤ 1) d ˜ J + I ( | θ | > 1) dJ A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 4 / 25
For each ( ε, x ) ∈ R 2 , consider the stochastic differential equation: ✓ ✏ ∫ dx t = a 0 ( ε, x t ) dt + a ( ε, x t ) ◦ dW t + b ( ε, x t − , θ ) dJ, x 0 = x R 0 ✒ ✑ { W t ; t ∈ [0 , T ] } : 1 -dimensional Brownian motion dJ : the Poisson random measure on [0 , T ] × R 0 dt dν : the intensity d ˜ J = dJ − dt dν, dJ = I ( | θ |≤ 1) d ˜ J + I ( | θ | > 1) dJ The associated infinitesimal generator is 0 f ( y ) + A ε A ε ∫ L ε f ( y ) = A ε { B ε θ f ( y ) − I ( | θ |≤ 1) B ε } f ( y ) + θ f ( y ) dν 2 R 0 B ε ( ) θ f ( y ) := f ( y + b ( ε, y, θ )) − f ( y ) A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 4 / 25
Proposition 1.2 → x t ∈ R has a C 1 -modification such that The mapping R ∋ x �− Z t := ∂ x x t satisfies the linear SDE: ∫ dZ t = a ′ 0 ( ε, x t ) Z t dt + a ′ ( ε, x t ) Z t ◦ dW t + b ′ ( ε, x t − , θ ) Z t − dJ. R 0 Z t is invertible a.s. A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 5 / 25
Proposition 1.2 → x t ∈ R has a C 1 -modification such that The mapping R ∋ x �− Z t := ∂ x x t satisfies the linear SDE: ∫ dZ t = a ′ 0 ( ε, x t ) Z t dt + a ′ ( ε, x t ) Z t ◦ dW t + b ′ ( ε, x t − , θ ) Z t − dJ. R 0 Z t is invertible a.s. → x t ∈ R has a C 1 -modification such that The mapping R ∋ ε �− H t := ∂ ε x t satisfies the SDE: ∫ dH t = a ′ 0 ( ε, x t ) H t dt + a ′ ( ε, x t ) H t ◦ dW t + b ′ ( ε, x t − , θ ) H t − dJ R 0 ∫ + ∂ ε a 0 ( ε, x t ) dt + ∂ ε a ( ε, x t ) ◦ dW t + ∂ ε b ( ε, x t − , θ ) dJ. R 0 A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 5 / 25
Existence of smooth densities Let ˜ ∂ θ b/ (1 + b ′ ) [ ] b ( ε, y, θ ) := ( ε, y, θ ) θ. A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 6 / 25
Existence of smooth densities Let ˜ ∂ θ b/ (1 + b ′ ) [ ] b ( ε, y, θ ) := ( ε, y, θ ) θ. Under the conditions y ∈ R a ( ε, y ) 2 > 0 and inf θ ∈ R 0 ∂ θ b ( ε, y, θ ) 2 > 0 , inf y ∈ R inf there exists α > 0 such that ∫ | θ/ρ | 2 ∧ 1 ( ) ρ α lim inf dν > 0 , ρ ↘ 0 R 0 there exists γ > 0 such that { ∫ } � 2 ∧ 1 | a ( ε, y ) /ρ | 2 + (� ) � ˜ ≥ c ρ − γ � inf b ( ε, y, θ ) /ρ dν y ∈ R R 0 for 0 < ρ < 1 . A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 6 / 25
Existence of smooth densities Let ˜ ∂ θ b/ (1 + b ′ ) [ ] b ( ε, y, θ ) := ( ε, y, θ ) θ. Under the conditions y ∈ R a ( ε, y ) 2 > 0 and inf θ ∈ R 0 ∂ θ b ( ε, y, θ ) 2 > 0 , inf y ∈ R inf there exists α > 0 such that ∫ | θ/ρ | 2 ∧ 1 ( ) ρ α lim inf dν > 0 , ρ ↘ 0 R 0 there exists γ > 0 such that { ∫ } � 2 ∧ 1 | a ( ε, y ) /ρ | 2 + (� ) � ˜ ≥ c ρ − γ � inf b ( ε, y, θ ) /ρ dν y ∈ R R 0 for 0 < ρ < 1 . Then, for each ( x, ε ) ∈ R 2 , there exists a smooth density p x,ε T ( y ) for x T . (cf. [T. 2002]) A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 6 / 25
< > Main problem C LG ( R ) = { f ∈ C ( R ) ; | f ( y ) | ≤ c (1 + | y | ) } { n } ∑ F = α k f k I A k ; α k ∈ R , f k ∈ C LG ( R ) , A k ⊂ R : interval k =1 A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 7 / 25
Main problem C LG ( R ) = { f ∈ C ( R ) ; | f ( y ) | ≤ c (1 + | y | ) } { n } ∑ F = α k f k I A k ; α k ∈ R , f k ∈ C LG ( R ) , A k ⊂ R : interval k =1 < Goal > For ϕ ∈ F , compute the differentials of E [ ϕ ( x T )] in x ∈ R and ε ∈ R : ϕ ( x T ) Γ x [ ] ∂ x ( E [ ϕ ( x T )]) = E T ϕ ( x T ) Γ ε [ ] ∂ ε ( E [ ϕ ( x T )]) = E T [ ] ∂ 2 ϕ ( x T ) ˜ Γ x x ( E [ ϕ ( x T )]) = E T (logarithmic derivatives of p x,ε T ( y ) , computations of the Greeks) A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 7 / 25
Sensitivity with respect to the initial point Theorem 1 (Sensitivity in x ∈ R , [T. ’08] ) For ϕ ∈ F , it holds that T = L x T − V x + K x T T ϕ ( x T ) Γ x , Γ x [ ] ∂ x ( E [ ϕ ( x T )]) = E . T A 2 A T T ∫ T [ 1 + b ′ ∫ ] | θ | 2 dJ, v ( ε, t, θ ) = ( ε, x t , θ ) Z t | θ | 2 , A T = T + ∂ θ b 0 R 0 ∫ t ∫ t { } Z s ∂ θ g ( θ ) v ( ε, s, θ ) ∫ d ˜ L x a ( ε, x s ) dW s , V x t = t = J, g ( θ ) 0 0 R 0 ∫ t ∫ K x t = 2 θv ( ε, s, θ ) dJ 0 R 0 A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 8 / 25
Remark 4.1 ∫ T ∫ ∫ e − λ | θ | 2 − 1 ( ) | θ | 2 dJ . Let N λ Recall A T = T + T = T dν . 0 R 0 R 0 Under the condition on dν : ∫ | θ/ρ | 2 ∧ 1 ρ α ( ) lim inf dν > 0 , ρ ↘ 0 R 0 A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 9 / 25
Remark 4.1 ∫ T ∫ ∫ e − λ | θ | 2 − 1 ( ) | θ | 2 dJ . Let N λ Recall A T = T + T = T dν . 0 R 0 R 0 Under the condition on dν : ∫ | θ/ρ | 2 ∧ 1 ρ α ( ) lim inf dν > 0 , ρ ↘ 0 R 0 it holds that, for any p > 1 , ∫ ∞ 1 [ ] [ ( )] A − p e N λ λ p − 1 E − λA T − N λ T dλ E = exp T T Γ( p ) 0 ∫ ∞ [ ∫ ] λ p − 1 exp ( λ | θ | 2 ) ∧ 1 { } ≤ c − λT − c T dν dλ 0 R 0 ∫ ∞ λ p − 1 exp [ ] − λT − c λ α/ 2 T ≤ c dλ 0 < ∞ . A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 9 / 25
Key Lemmas Let ϕ ∈ C 2 K ( R ) for a while. Recall stochastic differential equation: ∫ dx t = a 0 ( ε, x t ) dt + a ( ε, x t ) ◦ dW t + b ( ε, x t − , θ ) dJ R 0 x 0 = x infinitesimal generator: 0 + A ε A ε ∫ L ε = A ε B ε θ − I ( | θ |≤ 1) B ε { } + dν θ 2 R 0 B ε ( ) θ f ( y ) := f ( y + b ( ε, y, θ )) − f ( y ) A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 10 / 25
)� [ ( ] Let u ( t, x ) := E ϕ x T − t � x 0 = x ( t ∈ [0 , T ) , x ∈ R ) . A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 11 / 25
)� [ ( ] Let u ( t, x ) := E ϕ x T − t � x 0 = x ( t ∈ [0 , T ) , x ∈ R ) . Then, we see u ∈ C 1 , 2 ([0 , T ) × R ) , ∂ t u + L ε u = 0 , lim t ↗ T u ( t, x ) = ϕ ( x ) . b A. Takeuchi (Osaka City Univ. ) Logarithmic derivatives for jump processes June 30, 2009 11 / 25
Recommend
More recommend