localization for brownian motion in a heavy tailed
play

Localization for Brownian motion in a heavy tailed Poissonian - PowerPoint PPT Presentation

Localization for Brownian motion in a heavy tailed Poissonian potential Ryoki Fukushima Tokyo Institute of Technology 10th Workshop on Stochastic Analysis on Large Scale Interacting Systems In celebration of Prof. Funakis 60s birthday


  1. Localization for Brownian motion in a heavy tailed Poissonian potential Ryoki Fukushima Tokyo Institute of Technology 10th Workshop on Stochastic Analysis on Large Scale Interacting Systems In celebration of Prof. Funaki’s 60’s birthday Kochi University, December 5-7, 2011 1 / 18

  2. Motivation To understand the behavior of Brownian motion among randomly distributed (repulsive) obstacles. 2 / 18

  3. Motivation To understand the behavior of Brownian motion among randomly distributed (repulsive) obstacles. − → Brownian motion conditioned to avoid the obstacles. 2 / 18

  4. Motivation To understand the behavior of Brownian motion among randomly distributed (repulsive) obstacles. − → Brownian motion conditioned to avoid the obstacles. − → kill the Brownian motion by a random potential and condition to survive. 2 / 18

  5. 1. Setting ( ) : κ ∆-Brownian motion on R d • { B t } t ≥ 0 , P x ( ) ∑ : Poisson point process on R d • ω = δ ω i , P i with unit intensity 3 / 18

  6. 1. Setting ( ) : κ ∆-Brownian motion on R d • { B t } t ≥ 0 , P x ( ) ∑ : Poisson point process on R d • ω = δ ω i , P i with unit intensity Potential For a non-negative function v , ∑ V ω ( x ) := v ( x − ω i ) . i (Typically v ( x ) = 1 B (0 , 1) ( x ) or | x | − α ∧ 1 with α > d .) 3 / 18

  7. Annealed path measure We are interested in the behavior of Brownian motion under the measure ∫ t Q t ( · ) = 1 { } exp − V ω ( B s ) d s P ⊗ P 0 ( · ) , Z t 0 ∫ t [ { }] Z t = E ⊗ E 0 exp − V ω ( B s ) d s . 0 The configuration is not fixed and hence Brownian motion and ω i ’s try to avoid each other. 4 / 18

  8. • 0 • B t 5 / 18

  9. • 0 • B t 5 / 18

  10. Brief history (only annealed) ◮ Anderson (1958): Localization of electron in random potentials. ◮ Donsker-Varadhan (1975): Asymptotics of Z t in the case v ( x ) = o ( | x | − d − 2 ). ◮ Pastur (1977): Asymptotics of Z t in the case v ( x ) ∼ c | x | − α for α ∈ ( d , d + 2). ◮ Okura (1981): Asymptotics of Z t in the case v ( x ) ∼ c | x | − d − 2 . ◮ G¨ artner-Molchanov (1990, 1998): Localization of diffusion particle in general random potentials (weak sense). ◮ Sznitman (1991), Bolthausen (1994), Povel (1999): Strong localization of diffusion particle for compactly supported v . ◮ Asymptotics of Z t in various settings in the name “parabolic Anderson model”: G¨ artner, Molchanov, K¨ onig, Biskup, van der Hofstad, M¨ orters, Sidorova,... 6 / 18

  11. 2. Light tailed case Donsker and Varadhan (1975) When v ( x ) = o ( | x | − d − 2 ) as | x | → ∞ , ∫ t [ { }] E ⊗ E 0 exp − V ω ( B s ) ds 0 { d } d +2 (1 + o (1)) = exp − c ( d ) t ( 1 ) ( 1 ) d +2 R 0 ) d +2 R 0 )) = 0 = P 0 B [0 , t ] ⊂ B ( x , t ω ( B ( x , t , P as t → ∞ . 7 / 18

  12. 2. Light tailed case Donsker and Varadhan (1975) When v ( x ) = o ( | x | − d − 2 ) as | x | → ∞ , ∫ t [ { }] E ⊗ E 0 exp − V ω ( B s ) ds 0 { d } d +2 (1 + o (1)) = exp − c ( d ) t ( 1 ) ( 1 ) d +2 R 0 ) d +2 R 0 )) = 0 = P 0 B [0 , t ] ⊂ B ( x , t ω ( B ( x , t , P as t → ∞ . Remark This is related to spectral asymptotics of − κ ∆ + V ω (Lifshiz tail). 7 / 18

  13. ■ 1 B t R 0 t d +2 ❘ • • 0 8 / 18

  14. One specific strategy gives dominant contribution to the partition function. ⇓ It occurs with high probability under the annealed path measure. 9 / 18

  15. Sznitman (1991, d = 2) and Povel (1999, d ≥ 3) When v has a compact support, there exists 1 ( d +2 ( R 0 + o (1)) ) D t ( ω ) ∈ B 0 , t such that )) t →∞ ( 1 ( d +2 ( R 0 + o (1)) B [0 , t ] ⊂ B D t ( ω ) , t − − − → 1 . Q t Remark Bolthausen (1994) proved the corresponding result for two-dimensional random walk model. 10 / 18

  16. 3. Heavy tailed case Pastur (1977) When v ( x ) ∼ | x | − α as | x | → ∞ with α ∈ ( d , d + 2), ∫ t [ { }] { } d E ⊗ E 0 exp − V ω ( B s ) d s = exp − a 1 t α 0 as t → ∞ , where ( α − d ) a 1 := | B (0 , 1) | Γ . α 11 / 18

  17. ■ 1 α ) O ( t ✻ 1 ❘ α ) o ( t • 0 ❄ B t 12 / 18

  18. F. (2011) When v ( x ) = | x | − α ∧ 1 with α ∈ ( d , d + 2), ∫ t [ { }] E ⊗ E 0 exp − V ω ( B s ) d s 0 { } d α + d − 2 α − ( a 2 + o (1)) t = exp − a 1 t 2 α as t → ∞ , where {∫ } κ |∇ φ ( x ) | 2 + C ( d , α ) | x | 2 φ ( x ) 2 dx a 2 := inf . ∥ φ ∥ 2 =1 13 / 18

  19. F. (2011) When v ( x ) = | x | − α ∧ 1 with α ∈ ( d , d + 2), ∫ t [ { }] E ⊗ E 0 exp − V ω ( B s ) d s 0 { } d α + d − 2 α − ( a 2 + o (1)) t = exp − a 1 t 2 α as t → ∞ , where {∫ } κ |∇ φ ( x ) | 2 + C ( d , α ) | x | 2 φ ( x ) 2 dx a 2 := inf . ∥ φ ∥ 2 =1 Remark The proof relies on a general machinery developed by G¨ artner-K¨ onig (2000). 13 / 18

  20. |∇ φ ( x ) | 2 d x ) ∫ We believe that the 2nd term (in particular expresses the “effort to confine the Brownian motion”. ( ) ≈ exp {− tr ( t ) − 2 } . sup | B s | < r ( t ) P 0 0 ≤ s ≤ t 14 / 18

  21. |∇ φ ( x ) | 2 d x ) ∫ We believe that the 2nd term (in particular expresses the “effort to confine the Brownian motion”. ( ) ≈ exp {− tr ( t ) − 2 } . sup | B s | < r ( t ) P 0 0 ≤ s ≤ t tr ( t ) − 2 = t α + d − 2 α − d +2 ⇔ r ( t ) = t . 2 α 4 α 14 / 18

  22. ■ 1 α ) O ( t ✻ α − d +2 ❘ O ( t ) • 0 4 α ❄ B t 15 / 18

  23. Main Theorem 2 + ϵ )) t →∞ ( ( α − d +2 1 4 α (log t ) Q t B [0 , t ] ⊂ B 0 , t − − − → 1 , 16 / 18

  24. Main Theorem 2 + ϵ )) t →∞ ( ( α − d +2 1 4 α (log t ) Q t B [0 , t ] ⊂ B 0 , t − − − → 1 , { } in law t − α − d +2 4 α B t − − − → OU-process with α − d +2 s 2 α s ≥ 0 “random center”. 16 / 18

  25. Thank you! & Happy birthday professor Funaki! 17 / 18

  26. 0 the below is the • section along this line V ( ω, x ) Light tailed case t α ( t ) ≪ t /β ( t ) 2 α ( t ) ✛ ✲ β ( t ) 18 / 18

  27. 0 the below is the • section along this line V ( ω, x ) Heavy tailed case t α ( t ) ≫ t /β ( t ) 2 α ( t ) ✛ ✲ β ( t ) 18 / 18

Recommend


More recommend