lecture no 5
play

Lecture no: 5 Brief overview of a wireless communication link - PowerPoint PPT Presentation

RADIO SYSTEMS ETI 051 Contents Lecture no: 5 Brief overview of a wireless communication link Radio signals and complex notation (again) Modulation basics Important modulation formats Digital modulation Ove Edfors,


  1. RADIO SYSTEMS – ETI 051 Contents Lecture no: 5 • Brief overview of a wireless communication link • Radio signals and complex notation (again) • Modulation basics • Important modulation formats Digital modulation Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2010-04-20 Ove Edfors - ETI 051 1 2010-04-20 Ove Edfors - ETI 051 2 A simple structure Speech Speech Chann. A/D Encrypt. Modulation encoder encoding Ampl. Data STRUCTURE OF A WIRELESS Key COMMUNICATION LINK Speech Speech Chann. D/A Decrypt. Demod. decoder decoding Ampl. Data (Read Chapter 10 for more details) 2010-04-20 Ove Edfors - ETI 051 3 2010-04-20 Ove Edfors - ETI 051 4

  2. Simple model of a radio signal • A transmitted radio signal can be written ( ) ( ) = π + φ s t A cos 2 ft Amplitude Frequency Phase RADIO SIGNALS AND • By letting the transmitted information change the amplitude, the frequency, or the phase, we get the COMPLEX NOTATION tree basic types of digital modulation techniques (from Lecture 3) – ASK (Amplitude Shift Keying) – FSK (Frequency Shift Keying) Constant amplitude – PSK (Phase Shift Keying) 2010-04-20 Ove Edfors - ETI 051 5 2010-04-20 Ove Edfors - ETI 051 6 Interpreting the complex The IQ modulator notation ( ) s t Complex envelope (phasor) Transmitted radio signal I I-channel Q ( ) Transmited radio signal (in-phase) π cos 2 f t ( ) s t  s  t  c Re {  j 2  f c t } Q s  t  = s  t  e ( ) ( ) ( ) f = π s t s t cos 2 f t ( ) ( ) A t φ c I c t Re { A  t  e j 2  f c t } j  t  e = ( ) ( ) − π s t sin 2 f t ( ) Q c s t I Re { A  t  e j  2  f c t  t  } o -90 = I ( ) ( ) − π sin 2 f t s t = A  t  cos  2  f c t  t  c Q Q-channel (quadrature) Polar coordinates: Take a step into the complex domain: By manipulating the amplitude A (t) s  t = s I  t  j s Q  t   j  t  Complex envelope  s  t = s I  t  j s Q  t = A  t  e and the phase Φ (t) of the complex s  t = Re {  j 2  f c t } s  t  e envelope (phasor), we can create any j 2 π f t e Carrier factor type of modulation/radio signal. c 2010-04-20 Ove Edfors - ETI 051 7 2010-04-20 Ove Edfors - ETI 051 8

  3. Example: Amplitude, phase and frequency modulation ( ) ( ) ( ) ( ) = π + φ s t A t cos 2 f t t c ( ) ( ) φ A t t Comment: 00 01 11 00 10 - Amplitude carries information 4ASK - Phase constant (arbitrary) MODULATION 00 01 11 00 10 BASICS - Amplitude constant (arbitrary) 4PSK - Phase carries information 00 01 11 00 10 - Amplitude constant (arbitrary) - Phase slope (frequency) 4FSK carries information 2010-04-20 Ove Edfors - ETI 051 9 2010-04-20 Ove Edfors - ETI 051 10 Pulse amplitude modulation (PAM) Pulse amplitude modulation (PAM) The modulation process Basis pulses and spectrum Complex domain Bits Assuming that the complex numbers c m representing the data Radio ( ) are independent, then the power spectral density of the b c s t signal m m LP base band PAM signal becomes: Mapping PAM Re{ } S LP  f ~ ∣ ∫ − j 2  f t dt ∣ ( ) ∞ 2 π exp j 2 f t g  t  e Complex c numbers −∞ Symbol ∞ Many possible pulses s LP  t = ∑ which translates into a radio signal (band pass) with c m g  t − mT s  time PAM: ( ) g t m =−∞ 1 ( ) ( ) ( ) ( ) = − + − − S f S f f S f f “Standard” basis pulse criteria t BP LP c LP c 2 ∞ ( ) ∫ 2 dt = 1 or = T s g t ∣ g  t  ∣ (energy norm.) −∞ ∞ ∫ *  t − mT s  dt = 0 for m ≠ 0 (orthogonality) g  t  g t T −∞ s 2010-04-20 Ove Edfors - ETI 051 11 2010-04-20 Ove Edfors - ETI 051 12

  4. Pulse amplitude modulation (PAM) Pulse amplitude modulation (PAM) Basis pulses and spectrum Basis pulses TIME DOMAIN FREQ. DOMAIN Illustration of power spectral density of the (complex) base-band Rectangular [in time] signal, S L P ( f ), and the (real) radio signal, S B P ( f ). ( ) ( ) S f S f LP BP Normalized time / t T Normalized freq. f × T s − f f f f s c c (Root-) Raised-cosine [in freq.] Can be asymmetric, since it is a complex Symmetry (real radio signal) signal. What we need are basis pulses g ( t ) with nice properties like: - Narrow spectrum (low side-lobes) Normalized freq. f × T s Normalized time / t T - Relatively short in time (low delay) s 2010-04-20 Ove Edfors - ETI 051 13 2010-04-20 Ove Edfors - ETI 051 14 Multi-PAM Pulse amplitude modulation (PAM) Interpretation as IQ-modulator Modulation with multiple pulses For real valued basis functions g ( t ) we can view PAM as: Complex domain Bits Radio ( ) ( ) ( ) ( ) b c s t = s t Re s t signal I LP m m LP ( ) Mapping multi-PAM Re{ } Re c m ( ) g t ( ) π ( ) exp j 2 f t π cos 2 f t c c Radio Pulse b c f signal c m m Mapping shaping ∞ filters s LP  t = ∑ g c m  t − mT s  o -90 multi-PAM: ( ) − π sin 2 f t m −∞ c ( ) g t ( ) “Standard” basis pulse criteria Im c Several m ( ) ( ) ( ) ∫ ∣ g c m  t  ∣ different 2 dt = 1 or = T s (energy norm.) = s t Im s t Q LP *  t − kT s  dt = 0 for k ≠ 0 pulses ∫ g c m  t  g c m (orthogonality) *  t  dt = 0 for c m ≠ c n ∫ g c m  t  g c n (Both the rectangular and the (root-) raised-cosine pulses are real valued.) (orthogonality) 2010-04-20 Ove Edfors - ETI 051 15 2010-04-20 Ove Edfors - ETI 051 16

  5. Multi-PAM Continuous-phase FSK (CPFSK) Modulation with multiple pulses The modulation process Complex domain Frequency-shift keying (FSK) with M (even) different transmission Bits Radio frequencies can be interpreted as multi-PAM if the basis functions ( ) b c s t are chosen as: signal m m LP Mapping CPFSK Re{ } − j  k  f t for 0 ≤ t ≤ T s g k  t = e ( ) π exp j 2 f t c and for k = +/- 1, +/- 3, ... , +/- M/2 s LP  t = A exp  j  CPFSK  t   S LP  f  S BP  f  CPFSK: where the amplitude A is constant and the phase is t ∞  CPFSK  t = 2  h mod ∑ c m ∫ g  u − mT  du  − f f m =−∞ −∞ c c ∆ f Phase basis where h m d is the modulation index. pulse Bits: 00 01 10 11 o 2010-04-20 Ove Edfors - ETI 051 17 2010-04-20 Ove Edfors - ETI 051 18 Continuous-phase FSK (CPFSK) The Gaussian phase basis pulse In addition to the rectangular phase basis pulse, the Gaussian is the most common. IMPORTANT MODULATION BT s =0.5 FORMATS Normalized time / t T s 2010-04-20 Ove Edfors - ETI 051 19 2010-04-20 Ove Edfors - ETI 051 20

  6. Binary phase-shift keying (BPSK) Binary phase-shift keying (BPSK) Rectangular pulses Rectangular pulses Complex representation Signal constellation diagram Base-band Radio signal 2010-04-20 Ove Edfors - ETI 051 21 2010-04-20 Ove Edfors - ETI 051 22 Binary phase-shift keying (BPSK) Binary phase-shift keying (BPSK) Rectangular pulses Raised-cosine pulses (roll-off 0.5) Base-band Power spectral density for BPSK Radio signal Normalized freq. f × T b 2010-04-20 Ove Edfors - ETI 051 23 2010-04-20 Ove Edfors - ETI 051 24

  7. Binary phase-shift keying (BPSK) Binary phase-shift keying (BPSK) Raised-cosine pulses (roll-off 0.5) Raised-cosine pulses (roll-off 0.5) Complex representation Signal constellation diagram Power spectral density for BAM Normalized freq. f × T b Much higher spectral efficiency than BPSK (with rectangular pulses). 2010-04-20 Ove Edfors - ETI 051 25 2010-04-20 Ove Edfors - ETI 051 26 Quaternary PSK (QPSK or 4-PSK) Quaternary PSK (QPSK or 4-PSK) Rectangular pulses Rectangular pulses Complex representation Power spectral density for QPSK Radio signal Twice the spectrum efficiency of BPSK (with rect. pulses). TWO bits/pulse instead of one. 2010-04-20 Ove Edfors - ETI 051 27 2010-04-20 Ove Edfors - ETI 051 28

  8. Amplitude variations Quadrature ampl.-modulation (QAM) Root raised-cos pulses (roll-off 0.5) The problem Signals with high amplitude variations leads to less efficient amplifiers. Complex representation of QPSK Complex representation It is a problem that the signal passes through the origin, where the amplitude is ZERO. (Infinite amplitude variation.) Can we solve this problem in a simple way? Much higher spectral efficiency than QPSK (with rectangular pulses). 2010-04-20 Ove Edfors - ETI 051 29 2010-04-20 Ove Edfors - ETI 051 30 Amplitude variations Amplitude variations A solution A solution Let’s rotate the signal constellation diagram for each Looking at the complex representation ... transmitted symbol! QPSK without rotation QPSK with rotation / 4 2 ×/ 4 etc. A “hole” is created in the center. No close to zero amplitudes. 2010-04-20 Ove Edfors - ETI 051 31 2010-04-20 Ove Edfors - ETI 051 32

Recommend


More recommend