Laplace Transformation and Differential equations Mongi BLEL King Saud University March 17, 2020 Mongi BLEL Laplace Transformation and Differential equations
Exercise Use the Laplace transform to solve the initial-value problem y ′ + y = e − x + e x + cos x + sin x , y (0) = 1 . Mongi BLEL Laplace Transformation and Differential equations
Solution 1 : We begin by taking the Laplace transform of both sides to achieve + L [ y ] = L ( e − x + e x + cos x + sin x ) . � y ′ � L We know that 1 1 1 s L ( e − x + e x + cos x + sin x ) = s + 1 + s − 1 + s 2 + 1 + s 2 + 1. Denote Y ( s ) = L [ y ] , then 1 ( s + 1) 2 + 1 1 1 1 s Y ( s ) = s + 1 + 2( s − 1 − s + 1) + ( s + 1)( s 2 + 1) 1 + ( s + 1)( s 2 + 1) 1 1 1 1 = 2( s + 1) + ( s + 1) 2 + 2( s − 1) + s 2 + 1 . The solution of the differential equation: y = 1 2 e − x + xe − x + 1 2 e x + sin x . Mongi BLEL Laplace Transformation and Differential equations
Exercise Use Laplace transforms to solve the initial-value problem y ′ − 2 y = 5 + cos x + e 2 x + e − x , y (0) = 4 . Mongi BLEL Laplace Transformation and Differential equations
Solution 2 : By taking the Laplace transform of both sides of the differential equation, we get: sY − 4 − 2 Y = 5 1 1 s s + s 2 + 1 + s − 2 + s + 1 . Then 4 5 s 1 Y ( s ) = s − 2 + s ( s − 2) + ( s − 2)( s 2 + 1) + ( s − 2) 2 1 + ( s + 1)( s − 2) s − 2 + 5 4 � s − 2 − 1 1 � + 2 s − 2 + 1 1 − 2 s + 1 = s 2 + 1 2 5 5 s ( s − 2) 2 + 1 1 s − 2 − 1 1 1 + 3 3 s + 1 30( s − 2) − 5 217 2 s − 2 s 2 + 1 + 1 s 1 = s 2 + 1 5 5 ( s − 2) 2 − 1 1 1 + 3 s + 1 Mongi BLEL Laplace Transformation and Differential equations
and y ( x ) = 217 30 e 2 x − 5 2 − 2 5 cos x + 1 5 sin x + xe 2 x − 1 3 e − x . Mongi BLEL Laplace Transformation and Differential equations
Exercise Use the Laplace transform to solve the initial-value problem y ′′ − 2 y ′ + 2 y = cos x , y (0) = 1 , y ′ (0) = − 1 Mongi BLEL Laplace Transformation and Differential equations
Solution 3 : Using the Laplace transform of both sides of the differential equation, we get: s s 2 Y ( s ) − s + 1 − 2( sY ( s ) − 1) + 2 Y ( s ) = s 2 + 1 . s − 3 s Then Y ( s ) = ( s − 1) 2 + 1 + ( s 2 + 1)(( s − 1) 2 + 1) . Solving for Y ( s ) , we find: s − 1 ( s − 1) 2 + 1 + 1 2 s 2 + 1 − 2 s 1 Y ( s ) = ( s − 1) 2 + 1 − s 2 + 1 5 5 − 1 ( s − 1) 2 + 1 + 3 s − 1 1 ( s − 1) 2 + 1 . 5 5 Then e x cos x − 2 e x sin x + 1 5 cos x − 2 5 sin x − 1 5 e x cos x + 3 5 e x sin x = y 4 5 e x cos x − 7 5 e x sin x + 1 5 cos x − 2 = 5 sin x Mongi BLEL Laplace Transformation and Differential equations
Exercise Use Laplace transforms to solve the initial-value problem y ′ + y = 5 H ( x − 1) + e x H ( x − 1) + H ( x − 1) cos x , y (0) = 2 . Mongi BLEL Laplace Transformation and Differential equations
Solution 4 : Using the Laplace transform of both sides of the differential equation, we get: ( s + 1) Y − 2 = L [5 H ( x − 1) + e x H ( x − 1) + H ( x − 1) cos x ] . s e − s , L [ e x H ( x − 1)] = e − ( s − 1) Since L [ H ( x − 1)] = 1 and s − 1 L [ H ( x − 1) cos x ] = e − s sin 1 + cos 1 . We have: s 2 + 1 e − ( s − 1) 5 e − s ( s − 1)( s + 1) + (sin 1 + cos 1) e − s 2 Y ( s ) = s + 1 + s ( s + 1) + ( s + 1)( s 2 + 1) s + 1 + 5 e − s − e − s e − ( s − 1) 2 s + 1 + 1 = 2 s − 1 s e − ( s − 1) e − s − 1 s + 1 + (sin 1 + cos 1) 2 2 s + 1 se − s e − s − (sin 1 + cos 1) s 2 + 1 + (sin 1 + cos 1) s 2 + 1 2 2 Mongi BLEL Laplace Transformation and Differential equations
We have L − 1 � � 4 = 4 e − x , s +1 � 5 � L − 1 s e − s = 5 H ( x − 1) and � 5 � L − 1 s + 1 e − s = 5 H ( x − 1) e − ( x − 1) . Then y ( x ) = 4 e − x + 5 H ( x − 1) − 5 H ( x − 1) e − ( x − 1) . Mongi BLEL Laplace Transformation and Differential equations
Exercise Use the Laplace transform to solve the initial-value problem y ′′ + 2 y ′ + 5 y = H ( x − 2) , y (0) = 1 , y ′ (0) = 0 Mongi BLEL Laplace Transformation and Differential equations
Solution 5 : Using the Laplace transform of both sides of the differential equation, we get: s 2 Y ( s ) − sy (0) − y ′ (0) + 2( sY ( s ) − y (0)) + 5 Y ( s ) = e − 2 s . s = s + 2 + e − 2 s s 2 + 2 s + 5 � � Then Y ( s ) . Solving for Y ( s ) , we s find: s + 2 1 s 2 + 2 s + 5 + e − 2 s Y ( s ) = s ( s 2 + 2 s + 5) . s + 2 s + 1 1 We have s 2 + 2 s + 5 = ( s + 1) 2 + 4 + ( s + 1) 2 + 4 and � s + 1 � = e − x cos(2 x ) and L − 1 ( s + 1) 2 + 4 � 2 � = e − x sin(2 x ). L − 1 ( s + 1) 2 + 4 Mongi BLEL Laplace Transformation and Differential equations
e − 2 s s ( s 2 + 2 s + 5) = 1 � 1 s − ( s + 1) + 1 � 5 e − 2 s = ( s + 1) 2 + 4 1 � 1 s + 1 1 � 5 e − 2 s s − ( s + 1) 2 + 4 + ( s + 1) 2 + 4 . � � 1 s + 2 �� L − 1 e − 2 s s − = H ( x − 2)[1 s 2 + 2 s + 5 � � cos 2( x − 2) + 1 − e − ( x − 2) 2 sin 2( x − 2) ] . The solution y ( x ) to the initial-value problem is e − x cos(2 x ) + e − x sin(2 x ) + 1 y ( x ) = 5 H ( x − 2)[1 2 − e − ( x − 2) cos 2( x − 2) + e − ( x − 2) sin 2( x − 2)] 2 Mongi BLEL Laplace Transformation and Differential equations
Exercise Solve the differential equation y ′ + 3 y = 13 sin(2 t ) , y (0) = 6 . Mongi BLEL Laplace Transformation and Differential equations
Solution 6 : We take the Laplace transform of each member of the differential equation: 26 L ( y ′ )+3 L ( y ) = 13 L (sin(2 t )) . Then ( s +3) Y ( s ) − 6 = 6+ s 2 + 4. 6 26 s + 3 + − 2 s + 6 6 Y ( s ) = s + 3 + ( s + 3)( s 2 + 4) = and s 2 + 4 1 1 s y = 6 L − 1 ( s + 3) − 2 L − 1 ( s 2 + 4) + 6 L − 1 ( s 2 + 4) = 6 e − 3 t − 2 cos(2 t ) + 3 sin(2 t ) . Mongi BLEL Laplace Transformation and Differential equations
Exercise Solve the differential equation ′′ − 3 y ′ + 2 y = e − 4 t , y (0) = 1 , y ′ (0) = 5 . y Mongi BLEL Laplace Transformation and Differential equations
Solution 7 : We take the Laplace transform of each member of the differential equation: ′′ ) − 3 L ( y ′ ) + 2 L ( y ) = L ( e − 4 t ) . Then L ( y s 2 + 6 s + 9 ( s − 1)( s − 2)( s + 4 and y = − 16 5 e t + 25 5 e 2 t + 1 30 e − 4 t . Y ( s ) = Mongi BLEL Laplace Transformation and Differential equations
Exercise Solve the differential equation ′′ − 6 y ′ + 9 y = t 2 e 3 t , y (0) = 2 , y ′ (0) = 17 . y Solution 8 : We take the Laplace transform of each member of the differential equation: Y ( s ) = 2 s + 5 2 ( s − 3) 2 + ( s − 3) 5 . y = 2 e 3 t + 11 te 3 t 1 12 t 4 e 3 t . Mongi BLEL Laplace Transformation and Differential equations
Exercise Solve the following differential equation: y ′ − 2 y = f ( x ) , withy (0) = 3 , f ( x ) = 3 cos x for x ≥ 1 and f ( x ) = 0 , for 0 ≤ x ≤ 1 . Mongi BLEL Laplace Transformation and Differential equations
Solution 9 : s 2 +1 e − s and L ( f ( x )) = − 3 s s 2 +1 e − s . Then sF ( s ) − 3 − 2 F ( s ) = − 3 s 1 � 3 s � s 2 + 1 e − s F ( s ) = 3 − = s − 2 s − 2 + 6 3 s 2 + 1 e − s − 3 s 1 s 2 + 1 e − s . 5 5 L − 1 � � 3 = 3 e 2 t , s − 2 L − 1 � s 2 +1 e − s � 6 s = 6 5 cos( t − 1) H ( t − 1), 5 L − 1 � s 2 +1 e − s � 3 1 = 3 5 sin( t − 1) H ( t − 1). 5 y ( t ) = 3 e 2 t + 6 5 cos( t − 1) H ( t − 1) − 3 5 sin( t − 1) H ( t − 1) . Mongi BLEL Laplace Transformation and Differential equations
Solve the initial value problem y ′′ + y ′ + y = sin( x ) , y (0) = 1 , y ′ (0) = − 1 . Mongi BLEL Laplace Transformation and Differential equations
L{ y ′′ ( x ) } = s 2 Y ( s ) − sy (0) − y ′ (0) L{ y ′ ( x ) } = sY ( s ) − y (0) = sY ( s ) − 1 , Taking Laplace transforms of the differential equation, we get 1 ( s 2 + s + 1) Y ( s ) − s = s 2 + 1 . Then s 1 Y ( s ) = s 2 + s + 1 + ( s 2 + s + 1)( s 2 + 1) . √ s + 1 1 3) 2 − 1 3 s s 2 2 = = √ √ s 2 + s + 1 2 ) 2 + 3 2 ) 2 + ( 1 2 ) 2 + ( 1 ( s + 1 ( s + 1 ( s + 1 3 4 2 2 Mongi BLEL Laplace Transformation and Differential equations
Finding the inverse Laplace transform. Since √ s + 1 1 3 s s 3) 2 − 1 2 2 s 2 + s + 1 = = √ √ √ 2 ) 2 + 3 2 ) 2 + ( 1 2 ) 2 + ( 1 ( s + 1 ( s + 1 ( s + 1 3 3) 4 2 2 we have √ √ � s � 2 x cos(1 3 x ) − 1 2 x sin(1 = e − 1 e − 1 L − 1 √ 3 x ) . s 2 + s + 1 2 2 3 Also, we have 1 s + 1 s ( s 2 + s + 1)( s 2 + 1) = s 2 + s + 1 − s 2 + 1 , 1 1 s 2 + s + 1 = , and 2 ) 2 + 3 ( s + 1 4 √ � 1 � 2 2 x sin(1 e − 1 L − 1 √ = 3 x ) . s 2 + s + 1 2 3 Mongi BLEL Laplace Transformation and Differential equations
Then � 1 � � � � 1 � s L − 1 = L − 1 + L − 1 −L ( s 2 + s + 1)( s 2 + 1) s 2 + s + 1 s 2 + s + 1 We obtain √ 2 x cos(1 y ( x ) = 2 e − 1 3 x ) − cos( x ) . 2 Mongi BLEL Laplace Transformation and Differential equations
Solve the system of linear differential equation: � dx = − 2 x + y , dt with the initial conditions x (0) = 1, y (0) = 2. dy = x − 2 y dt Mongi BLEL Laplace Transformation and Differential equations
Recommend
More recommend