Automatic Control EEM 3117 Laplace Transformation Dr. Sezai Taskin Department of Electrical&Electronics Engineering Faculty of Engineering, Manisa Celal Bayar University
Laplace Transformation The Laplace transform of a function f ( t ), defined for all real numbers t ≥ 0, is the function F ( s ), defined by: L st L [ ( )] f t F s ( ) f t e ( ) dt 0 F(s) Slides 2 2
Why s-domain? • We can transform an ordinary differential equation into an algebraic equation which is easy to solve. • It is also easy to analyze and design interconnected (series, feedback etc.) systems. Slides 2 3
• Unit step function L st [1] e dt 0 st e s 0 1 t 0 ( ) ( ) f t u t 0 1 0 t 0 s s 1 1 L [1] s s Slides 2 4
Exponential function at f t ( ) e L at at st ( s a t ) [ e ] e e dt e dt 0 0 ( s a t ) e ( s a ) 0 0 1 ( s a ) ( s a ) 1 1 L at [ e ] s a s a Slides 2 5
Frequency shift 1 1 L L at [1] [ e 1] s s a L at [ ( )] ( ) e f t F s a Slides 2 6
Sine and cosine functions s L L [sin t ] [cos t ] 2 2 2 2 s s Slides 2 7
Impulse function f t ( ) st st L [ ( )] t ( ) t e dt e 1 0 t 0 Slides 2 8
Unit ramp t t 0 ( ) ( ) f t u t 0 t 0 (integration by parts) udv uv vdu L st [ ] t e t dt similarly 0 st st st e t e e 1 n ! t d dt L n [ ] t 2 s s s s s n 1 0 0 0 Slides 2 9
Differentiated function L [ ( )] ( ) f t F s ( ) df t L ( ) (0) sF s f dt n d f t ( ) n n 1 L s F s ( ) s f (0) n dt n 2 ( n 1) (0)..... (0) s f f Slides 2 10
Integrated function F s ( ) t L f t dt ( ) s 0 2 nd shifting theorem L as f t ( a ) e F s ( ) Slides 2 11
Solution of differential equations using Laplace Transformation Transformed Differential Laplace Transformation Equation Equation Algebraic Particular Complementary Manipulation Integral function Transformed Solution Solution Inverse Laplace Slides 2 12
Example dx 2 x 5 dt 5 sx s ( ) x (0) 2 ( ) x s Transformed Equation s 5 x s ( ) Transformed Solution s s ( 2) 5 t t 2 t 2 t x t ( ) 5 e dt e 2 0 0 2 t 2.5(1 e ) Slides 2 13
Convolution integral F s ( ) F s F s ( ). ( ) f t ( ) f t ( ) f t ( ) 1 2 1 2 Ex: 1 1 1 F s ( ) 2 s 3 s 2 ( s 1) ( s 2) t 2 t f t ( ) e e t f ( ) f t ( ) d 1 2 0 t t 2( t ) 2 t e e d e e d 0 0 2 t t t 2 t e ( e 1) e e Slides 2 14
Recommend
More recommend