L13 for English Acquisition I B k and II B i , 2011 このスライドは次の URL から入手できます : http://clsl.hi.h.kyoto-u.ac.jp/~kkuroda/lectures/11B-KIT/KIT-2011B-L13- slides.pdf 黒田 航 ( 非常勤 ) 2012-1-31 ( 火 ) Tuesday, January 31, 2012
連絡 ✤ 本日が本年度 ( 後期 ) の最後の授業 ✤ 次回 2 月 7 日はボーナス試験 (L14 に相当 ) ✤ 原則として任意参加 ✤ ただし後で指名する方々は点数が不足しています Tuesday, January 31, 2012
ボーナス試験とは ? ✤ 本番と同じ課題に挑戦 ✤ 一回目 ( 本番 ) のハズレがアタリに修正される ✤ 一回目 ( 本番 ) のアタリが変更されない ✤ つまり単調に得点が増える ✤ 目的 ✤ 復習の努力に報いる ✤ 出席不足の学生の救済 Tuesday, January 31, 2012
1B k でボーナス試験が必須の方々 ✤ 赤は 2012/01/31 の L13 の結果で確定 ✤ 林 智孝 , 中島 裕貴 (2 名 ) Tuesday, January 31, 2012
2B i でボーナス試験が必須の方々 ✤ 赤は 2012/01/31 の L13 の結果で確定 ✤ 別所 直哉 , 米谷 紗恵子 , 佐々木 陽平 , 奥藤 陶子 , 竹田 慶 , 林 真志 , 竹下 暁子 (7 名 ) Tuesday, January 31, 2012
2B i でボーナス試験が必須の方々 ✤ 赤は危険,橙は注意 ✤ 阿部 達郎 , 佐々木 陽平 , 別所 直哉 , 米谷 紗恵子 , 奥藤 陶 子 , 竹田 慶 , 林 真志 , 竹下 暁子 (8 名 ) ✤ 立花 舞 , 北村 亮太 , 市村 真央 (3 名 ) Tuesday, January 31, 2012
2/7 のボーナス試験の課題 ✤ L05, L06, L11 の三回分 ✤ L05: Matt Cutts: Try Something New for 30 Days ✤ L06: Julian Treasure: Shh! Sound Health in 8 Steps ✤ L11: Ben Goldacre: Battling Bad Science Tuesday, January 31, 2012
講義資料 ✤ 聴き取り用の教材は次の Web ページから入手可能 ✤ http://clsl.hi.h.kyoto-u.ac.jp/~kkuroda/lectures/KIT-11B.html ✤ 授業時間外での予習や復習に利用して下さい Tuesday, January 31, 2012
講義資料を見るためのパスワード ✤ 部外者が講義資料を読めないようにしました ✤ 皆さんが講義資料を閲覧するためのパスワードは ✤ 20_11B_KIT ✤ です Tuesday, January 31, 2012
本日の予定 ✤ 前半 40 分 ✤ L12 の聴き取り訓練の結果の報告 ✤ 後半 50 分 ✤ 1B k ✤ Richard Feynman: The Feynman Lectures on Physics, Volume 1. Chapter 4: Conservation of Energy の後半 ✤ 2B i ✤ Tim Harford: Trial, Error, and the God Complex (18 分 ) の後半 10 分 Tuesday, January 31, 2012
L12 の成績 Date Tuesday, January 31, 2012
採点法 ✤ 点数 ✤ 完全正解 1.0 ( ◯で表示 ) と 不完全解 0.5 ( △で表示 ) ✤ 評価基準 ✤ 素得点 S = ◯の数 + ( △の数 )/2 ✤ 正答率 P = ◯の数 / S ✤ 成績評価用の得点 : S * = 100 × S / 問題の総数 (e.g., 30) ✤ 採点誤りがあるかも知れません ✤ 数え間違いや足り算間違をしますので,該当者は報告して下さい Tuesday, January 31, 2012
出題への評価 問題の数量 問題の数量 問題の難しさ 問題の難しさ Q1: 問題の数量 Q1: 問題の数量 Q2: 問題の難しさ Q2: 問題の難しさ Stde Stde Min Num Av. Max Min Av. Max v v ber 1B k 3.13 0.34 4.00 3.00 3.06 0.77 4.00 1.00 16/28 2B i 3.00 0.63 4.00 2.00 2.50 0.55 3.00 2.00 6/12 Tuesday, January 31, 2012
平均得点の履歴 Tuesday, January 31, 2012
L12 の得点分布 1B k ✤ 受講者数 : 28 人 ✤ 平均点 : 17.57/ n [70.29] 点 ✤ 標準偏差 : 2.07/ n [ 8.29] 点 ✤ 最高点 : 21.50/ n [86.00] 点 ✤ 最低点 : 14.00/ n [56.00] 点 ✤ n = 25 ✤ 得点グループ数 =3? Tuesday, January 31, 2012
L12 の得点分布 2B i ✤ 受講者数 : 12 人 ✤ 平均点 : 14.58/ n [58.33] 点 ✤ 標準偏差 : 2.08/ n [ 8.30] 点 ✤ 最高点 : 18.00/ n [74.00] 点 ✤ 最低点 : 10.00/ n [42.00] 点 ✤ n = 25 ✤ 得点グループ数 =2? Tuesday, January 31, 2012
平均正解率の履歴 Tuesday, January 31, 2012
L12 の正答率分布 1B k ✤ 参加者 : 28 人 ✤ 平均 : 0.69 ✤ 標準偏差 : 0.10 ✤ 最高 : 0.88; 最低 : 0.48 ✤ 正答率のグループ数 =2? Tuesday, January 31, 2012
L12 の正答率分布 2B i ✤ 参加者 : 12 人 ✤ 平均 : 0.61 ✤ 標準偏差 : 0.09 ✤ 最高 : 0.81; 最低 : 0.38 ✤ 正答率のグループ数 =3? Tuesday, January 31, 2012
L12 の正解 EA1B k The Feynman Lectures on Physics Tuesday, January 31, 2012
EA1B k の L12 の正解 ✤ 1. summary ✤ 14. let ⇒ left, lend, lead, rock, close, come ✤ 2. given ✤ 15. ingenious ⇒ genius, genious ✤ 3. general ⇒ janual, janal, journal ✤ 16. discoveries ⇒ discovered, discoveried ✤ 4. theoretical physics ⇒ __ physics ✤ 17. deviations ✤ 5. law’s ⇒ law, laws, lows, all ✤ 18. minus ✤ 6. abstract ✤ 19. blocks ⇒ box, boxes ✤ 7. nature ✤ 20. aspect ⇒ expect, respectables, aspectable ✤ 8. imagine ✤ 21. figuring ⇒ figure ✤ 9. put ⇒ putted, putting, pulled, improved ✤ 22. forms ⇒ form ✤ 10. cruious ✤ 23. analogy ⇒ energy ✤ 11. looking ✤ 24. formulas ⇒ formula ✤ 12. Careful ✤ 25. reasons ✤ 13. count ⇒ can, come Tuesday, January 31, 2012
1/14 ✤ The Feynman Lectures on Physics— This lecture was presented by Dr. Richard Feynman on October 6th, 1961 at the California Institute of Technology. Volume 1, Chapter 4: Conservation of Energy ✤ There are— will be no summary of the previous lecture, huh. There’s no [1. summary] of the previous lecture. You just to remember whatever you can remember from it. No vital points. ✤ The, uh, next two lectures after today will be given by Professor Matt Sands because I’m going to a meeting in, uh, Brussels. So, I’ll come back, uh, next Tuesday, (and) I mean the Tuesday following. Tuesday, January 31, 2012
2/14 ✤ Section 4.1: What is energy? ✤ Today’s lecture is on, uh, one of the laws of physics, and, uh, beginning, of course, [t] uh, detailed looking at the different aspects of physics. We just finished, uh, description of, uh, things in [2. general] and now we look more specifically, in particular, what a law of physics looks like. And so I picked one out uh/as to illustrate the ideas and a kind of reasoning that might be used in, say, theoretical physics. So, the lecture today is on the conservation of energy . Tuesday, January 31, 2012
3/14 ✤ There is a fact, or if you wanna call it a “law,” governing all natural phenomena that’s known today there’s no exception known to this. It’s exact as far as we know. And the [3. law’s] called the conservation of energy . ✤ It states: there is a certain quantity, and which we call energy, that doesn’t change in, uh, manifold changes which nature undergoes. ✤ Now that’s a very abstract idea because it’s a mathematical principle. It says there’s a numerical quantity that doesn’t change when something happens. Tuesday, January 31, 2012
4/14 ✤ It’s not a description of a mechanism, or anything. It’s just a strange fact that you can calculate some number and when you all finish watching [4. nature] go through her tricks and calculate a number again, and it’s the same. Something like the bishop is on the red square now, and after a number of moves, details are unknown, it’s still on some red square. It’s a law of this nature. ✤ Since it’s an abstract idea, I would like to illustrate the meaning of it with a lot of pecu— uh silly example(s) but it does illustrate the idea. Tuesday, January 31, 2012
5/14 ✤ I want you to imagine a child, perhaps Denis the Manis , who has blocks. But you must appreciate that these blocks are absolutely indestructible and cannot divided into pieces. They’re just— each is the same as the others. (And) I will suppose that he has, say, 28 blocks. ✤ Now, this child is [5. put] into a room by his mother, at/and the beginning of the day with these 28 blocks. At the end of the day, I don’t know why she’s so curious but she counts the blocks very carefully and discovers a phenomenal law that no matter what he does with the blocks, there are always 28 blocks. Tuesday, January 31, 2012
6/14 ✤ So, this goes on for a number of days, until one day there are 27 blocks, but uh a little [6. looking] around shows that there’s some under the log. You have to be careful to make it sure that you looked everywhere in order to make it sure that the number of blocks doesn’t change. ✤ One day, however, the number of blocks appears to change. There’re only 26 blocks. [7. Careful] investigation indicates that the window was open and now looking outside, you can find other two blocks. So, you bring them back in again and everything’s alright. Tuesday, January 31, 2012
7/14 ✤ Another day, careful [8. count] indicates the existence of 30 blocks. (Laughter) This causes a considerable concinnation until it was realized that Bruce came to visit and he owned blocks and left perhaps a few. ✤ So, after you get rid of some of these things, we close the window, we don’t [9. let] Bruce in then we see everything is going along alright until one time we count 25 blocks. Tuesday, January 31, 2012
Recommend
More recommend