kinetic monte carlo simulations of nanofilm formation
play

Kinetic Monte Carlo Simulations of Nanofilm Formation South Orange, - PowerPoint PPT Presentation

Kinetic Monte Carlo Simulations of Nanofilm Formation South Orange, August 5, 2014 Jan Willem Abraham CAU Kiel J.W. Abraham, CAU Kiel (Metal-Polymer) Nanocomposites Optics (surface plasmon resonances) Electronics Food packaging


  1. Kinetic Monte Carlo Simulations of Nanofilm Formation South Orange, August 5, 2014 Jan Willem Abraham CAU Kiel J.W. Abraham, CAU Kiel

  2. (Metal-Polymer) Nanocomposites ● Optics (surface plasmon resonances) ● Electronics ● Food packaging ● Medicine ● Biological systems J.W. Abraham, CAU Kiel

  3. (Metal-Polymer) Nanocomposites ● Optics (surface plasmon resonances) ● Electronics ● Food packaging ● Medicine ● Biological systems Nacre, source: wikipedia J.W. Abraham, CAU Kiel

  4. Questions ● How do KMC simulations work? ● Is KMC exact? ● What are the advantages/disadvantages of the method? ● How can the formation of nanofilms be simulated with KMC? J.W. Abraham, CAU Kiel

  5. Reference for Details Complex Plasmas: Scientific Challenges and Technological Opportunities Michael Bonitz, Jose Lopez, Kurt Becker and Hauke Thomsen (Eds.), Springer Series on Atomic, Optical, and Plasma Physics, Volume 82 2014 J.W. Abraham, CAU Kiel

  6. Motivation by Experiments J.W. Abraham, CAU Kiel

  7. (Co-)Deposition 1 1 M. Bonitz et al., Contrib. Plasma Phys. 52 , 890 (2012) J.W. Abraham, CAU Kiel

  8. (Co-)Deposition Metal atoms (or clusters) are deposited on a polymer matrix, where they diffuse and form metallic structures. Or: Metal and polymer are deposited at the same time (co-deposition). What arrives at the substrate? J.W. Abraham, CAU Kiel

  9. Surface vs. Bulk Diffusion Au-trimethylcyclohexane- polycarbonate interface 1 1 C. Bechtolsheim et al., Appl. Surf. Sci. 151 , 119 (1999) J.W. Abraham, CAU Kiel

  10. From Low to High Filling Factors TEM micrographs of Nylon-Ag nanocomposites 1 1 H. Takele, H. Greve, C. Pochstein, V. Zaporojtchenko, F. Faupel, Nanotechnology 17 , J.W. Abraham, CAU Kiel 3499 (2006)

  11. Controlling Electronic Properties Au-Teflon AF nanocomposite 1 1 H. Takele et al., Eur. Phys. J. Appl. Phys. 33 , 83 (2006) J.W. Abraham, CAU Kiel

  12. Metallic Nanocolumns 1 Vapor-phase co-deposition Metal Polymer Fe-Ni-Co Teflon rates Self-organization of nanocolumnar structures 1 H. Greve et. al, Appl. Phys. Lett. 88 , 123103 (2006) J.W. Abraham, CAU Kiel

  13. Theory J.W. Abraham, CAU Kiel

  14. Probability Theory Physical Stochastic behavior process J.W. Abraham, CAU Kiel

  15. Probability Theory Physical Stochastic behavior process Example: random walk with jumps at discrete time points J.W. Abraham, CAU Kiel

  16. Random Variable sample space state space Random variable for a two-jump process J.W. Abraham, CAU Kiel

  17. Random Variable sample space state space Random variable for a two-jump process J.W. Abraham, CAU Kiel

  18. Stochastic Process family of random variables J.W. Abraham, CAU Kiel

  19. Markov chain past Stochastic process “without memory“ J.W. Abraham, CAU Kiel

  20. Time Homogeneity J.W. Abraham, CAU Kiel

  21. Transition Times Jump rate Keep the rate, but allow random GOAL transition/holding times. J.W. Abraham, CAU Kiel

  22. Transition Times What are the transition/holding times of continuous-time Markov chains? J.W. Abraham, CAU Kiel

  23. Transition Times ● Time homogeneity Exponential distribution of ● Markov property transition times Exponential probability density function J.W. Abraham, CAU Kiel

  24. Transition Times ● Time homogeneity Exponential distribution of ● Markov property transition times Exponential probability density function J.W. Abraham, CAU Kiel

  25. Master Equation J.W. Abraham, CAU Kiel

  26. Simulations J.W. Abraham, CAU Kiel

  27. Workflow Physical Reality Experimental observations Exact microscopic calculations J.W. Abraham, CAU Kiel

  28. Workflow Physical Reality Experimental observations Comparison Exact microscopic calculations Modeling Idealized processes Rates Simulations (KMC) Statistical results Solution of the master equation J.W. Abraham, CAU Kiel

  29. Algorithmic Constructions 1 ● Variable Step Size Method ● Random Selection Method ● First Reaction Method . . . 1 A.P.J. Jansen, An Introduction to the Kinetic Monte Carlo Simulations of Surface J.W. Abraham, CAU Kiel Reactions, Springer (2012)

  30. First Reaction Method 1 1 M. Bonitz et al. (Eds.), Complex Plasmas: Scientific Challenges and Technological J.W. Abraham, CAU Kiel Opportunities, Springer Series on Atomic, Optical, and Plasma Physics, Volume 82 (2014)

  31. First Reaction Method 1 Skipped: competition theorem 1 M. Bonitz et al. (Eds.), Complex Plasmas: Scientific Challenges and Technological J.W. Abraham, CAU Kiel Opportunities, Springer Series on Atomic, Optical, and Plasma Physics, Volume 82 (2014)

  32. First Reaction Method 1 Initialization Sample process times according to the exponential distribution f ( t )= R i exp(- R i t ) Monte Carlo step Execute process with the earliest time Iterate Update Advance the time Resample all affected processes 1 M. Bonitz et al. (Eds.), Complex Plasmas: Scientific Challenges and Technological J.W. Abraham, CAU Kiel Opportunities, Springer Series on Atomic, Optical, and Plasma Physics, Volume 82 (2014)

  33. Why are we doing this? Experiment J.W. Abraham, CAU Kiel

  34. Why are we doing this? Experiment Model A Model B J.W. Abraham, CAU Kiel

  35. Is KMC exact? J.W. Abraham, CAU Kiel

  36. Is KMC exact? Exact behavior as dictated by the corresponding master equation But: systematic errors in the model J.W. Abraham, CAU Kiel

  37. Example: Diffusion & Drift Master equation KRAMERS-MOYAL EXPANSION Fokker-Planck equation Langevin equation J.W. Abraham, CAU Kiel

  38. Example: Diffusion & Drift J.W. Abraham, CAU Kiel

  39. Example: Diffusion in 2D J.W. Abraham, CAU Kiel

  40. Example: Forces 2 . 5 2 19 charged 1 . 5 1 particles 0 . 5 y in a 2D 0 - 0 . 5 harmonic trap - 1 - 1 . 5 - 2 - 2 . 5 - 2 . 5 - 2 - 1 . 5 - 1 - 0 . 5 0 0 . 5 1 1 . 5 2 2 . 5 x J.W. Abraham, CAU Kiel

  41. Applications J.W. Abraham, CAU Kiel

  42. Simulation Model 1,2 Processes with rates Growth mechanisms and trapping 1 L. Rosenthal et al., J. Appl. Phys. 144 , 044305 (2013) J.W. Abraham, CAU Kiel 2 L. Rosenthal et al., Contrib. Plasma Phys. 51 , 971 (2011)

  43. Metal-Polymer Interfaces J.W. Abraham, CAU Kiel

  44. Metal-Polymer Interfaces 1 1 L. Rosenthal, PhD thesis, University of Kiel (2013) J.W. Abraham, CAU Kiel

  45. Metal-Polymer Interfaces 1 1 L. Rosenthal, PhD thesis, University of Kiel (2013) J.W. Abraham, CAU Kiel

  46. Percolation 1 1 L. Rosenthal, PhD thesis, University of Kiel (2013) J.W. Abraham, CAU Kiel

  47. Metallic Nanocolumns J.W. Abraham, CAU Kiel

  48. Metallic Filling Factor 1,2 1 H. Greve et. al, Appl. Phys. Lett. 88 , 123103 (2006) J.W. Abraham, CAU Kiel 2 L. Rosenthal et al., J. Appl. Phys. 144 , 044305 (2013)

  49. Growth Mechanisms N =50 N =100 atom Spherical growth “liquid drop“ critical nucleus size Columnar growth J.W. Abraham, CAU Kiel

  50. Video ... defect cluster column J.W. Abraham, CAU Kiel

  51. Nucleation at Defect Sites J.W. Abraham, CAU Kiel

  52. Columnar Growth J.W. Abraham, CAU Kiel

  53. Results R defect / R m = 10 -8 J.W. Abraham, CAU Kiel

  54. Results R defect / R m = 10 -8 J.W. Abraham, CAU Kiel

  55. Results R defect / R m = 10 -3 J.W. Abraham, CAU Kiel

  56. Results R defect / R m = 10 -3 J.W. Abraham, CAU Kiel

  57. Extensions of the Model Temperature dependence of critical nucleus size 1 1 F. Ding et al. Phys. Rev. B 70 , 075416 (2004) J.W. Abraham, CAU Kiel

  58. Simulation vs. Experiment J.W. Abraham, CAU Kiel

  59. Summary ● How do KMC simulations work? ● Is KMC exact? ● What are the advantages/disadvantages of the method? ● How can the formation of nanofilms be simulated with KMC? J.W. Abraham, CAU Kiel

  60. Thank you! J.W. Abraham, CAU Kiel

Recommend


More recommend