kei suzuki kek
play

Kei Suzuki (KEK) from JLQCD Collaboration: Sinya Aoki (YITP), - PowerPoint PPT Presentation

The 36th Annual International Symposium on Lattice Field Theory Kei Suzuki (KEK) from JLQCD Collaboration: Sinya Aoki (YITP), Yasumichi Aoki (KEK/RIKEN-BNL), Guido Cossu (Edinburgh), Hidenori Fukaya (Osaka U.), Shoji Hashimoto (KEK)


  1. The 36th Annual International Symposium on Lattice Field Theory Kei Suzuki (KEK) from JLQCD Collaboration: Sinya Aoki (YITP), Yasumichi Aoki (KEK/RIKEN-BNL), Guido Cossu (Edinburgh), Hidenori Fukaya (Osaka U.), Shoji Hashimoto (KEK) 24/Jul/2018

  2. π‘Ÿπ‘Ÿ ~0 ΰ΄€ QCD phase diagram (for 𝑣, 𝑒, 𝑑 quarks) Phase transition ( crossover οΌ‰ π‘Ÿ π‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ β‰  0 ΰ΄€ Chiral condensate ( chiral symmetry breaking οΌ‰ 24/Jul/2018 Lattice 2018 2 2

  3. U(1) A symmetry ( in vacuum, broken by anomaly οΌ‰ is restored above Tc ? β€’ Above Tc, chiral symmetry breaking by ΰ΄€ π‘Ÿπ‘Ÿ is restored β‡’ How about U(1) A symmetry? ∞ 𝑒 4 𝑦 𝜌 𝑏 (𝑦)𝜌 𝑏 (𝑦) βˆ’ πœ€ 𝑏 (𝑦)πœ€ 𝑏 (𝑦) βˆ† πœŒβˆ’πœ€ = ΰΆ± 0 U(1) A breaking ? π‘Ÿ π‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ π‘ˆ 𝑑 24/Jul/2018 3

  4. Cf.) S. Aoki, H. Fukaya, and Y. Taniguchi, PRD86 If U(1) A is restored… Colombia plot is modified? 𝑛 𝑑𝑠𝑗 (?) 𝑂 𝑔 = 2 world 𝑛 𝑑 β†’ ∞ 𝑛 𝑣,𝑒,𝑑 β†’ ∞ (Pure gauge) Conventionally, at 𝑛 𝑣,𝑒 β†’ 0 , 2 nd with 𝑃(4) 1st 𝑔 = 1 world Critical line is shifted? 1 st order? crossover 2 nd order, not 𝑃(4) ? 𝑂 1st 𝑛 𝑣,𝑒,𝑑 β†’ 0 𝑛 𝑣,𝑒 β†’ ∞

  5. U(1) A symmetry above Tc β‡’ Long-standing problem in QCD β€’ Gross-Pisarski-Yaffe (Dilute instanton gas model, 1981) restored at enough high T β€’ Cohen (1996) w/o zero mode (or instanton) β‡’ restored β€’ Aoki-Fukaya-Taniguchi (2012) zero mode suppressed, restored in chiral limit at 𝑂 𝑔 = 2 β€’ HotQCD (DW, 2012) broken β€’ JLQCD (topology fixed overlap, 2013) restored β€’ TWQCD (optimal DW, 2013) restored β€’ LLNL/RBC (DW, 2014) broken (restored at higher T?) β€’ Dick et al. (overlap on HISQ, 2015) broken β€’ Sharma et al. (overlap on DW, 2015,2016,2018) broken β€’ Brandt et al. (Wilson, 2016) restored β€’ Ishikawa et al. (Wilson, 2017) restored β€’ JLQCD (reweighted overlap on DW, 2017) restored β€’ Rohrhofer et al. (DW, 2017) restored β‡’ Many suggestions from lattice QCD (and models)…

  6. U(1) A symmetry restoration by JLQCD Collaboration β‡’ overlap fermion (exact chiral symmetry on the lattice) valence/sea quark Setup G. Cossu et al. PRD87 OV on OV (2013) (Topology fixed sector) DW on DW A. Tomiya et al. PRD96 1/a=1.7GeV OV on DW (2017) (a=0.11fm) OV on (reweighted) OV 1/a=2.6GeV OV on DW In progress (a=0.076fm) OV on (reweighted) OV (Finer lattice) 24/Jul/2018 Lattice 2018 6

  7. Outline οΌ‘οΌŽ Introduction οΌ’οΌŽ U(1) A susceptibility from Dirac spectra ( zero mode and ultraviolet divergence οΌ‰ οΌ“οΌŽ Results 3-1: U(1) A susceptibility at finite T 3-2: Cutoff and volume dependences 4. Summary π‘Ÿπ‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ U(1) A π‘Ÿπ‘Ÿ ΰ΄€ 𝑅 𝑒 = 1 πœ‡ ov 24/Jul/2018 Lattice 2018 7

  8. Chiral condensate and Dirac spectra Banks-Casher relation: ∞ 2𝑛 π‘Ÿπ‘Ÿ = lim ΰ΄€ 𝑛→0 ΰΆ± π‘’πœ‡ 𝜍 πœ‡ πœ‡ 2 + 𝑛 2 0 1 π‘Š Ξ£ πœ‡ β€² < πœ€ πœ‡ βˆ’ πœ‡ β€² > 𝜍 πœ‡ ≑ lim π‘Šβ†’βˆž 𝜍 πœ‡ with interaction π‘Ÿπ‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ Chiral condensate induced by low modes 𝜍 πœ‡ ~πœ‡ 3 πœ‡ w/o interaction 𝜍 0 = βˆ’ ΰ΄€ π‘Ÿπ‘Ÿ /𝜌 24/Jul/2018 Lattice 2018 8

  9. G. Cossu et al. (JLQCD) PRD87 (2013), 114514 T-dependence of Dirac spectra Low T : ρ(0)β‰  0 β‡’ Spontaneous chiral symmetry breaking π‘Ÿπ‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ π‘Ÿπ‘Ÿ ΰ΄€ Critical Temp. High T : ρ(0)=0 β‡’ Chiral symmetry restoration Low energy High energy

  10. U(1) A susceptibility and low modes of Dirac spectra ∞ 2𝑛 2 βˆ† πœŒβˆ’πœ€ = ΰΆ± π‘’πœ‡ 𝜍 πœ‡ (πœ‡ 2 + 𝑛 2 ) 2 0 𝜍 πœ‡ Low mode contribution is enhanced by the factor of 1/πœ‡ 4 πœ‡ ∞ 2𝑛 π‘Ÿπ‘Ÿ = lim ΰ΄€ 𝑛→0 ΰΆ± π‘’πœ‡ 𝜍 πœ‡ Cf.) Banks-Casher relation: πœ‡ 2 + 𝑛 2 0 24/Jul/2018 Lattice 2018 10

  11. S. Aoki, H. Fukaya, and Y. Taniguchi PRD86 (2012), 114512 A. Tomiya et al. (JLQCD) PRD96 (2017), 034509 Note οΌ‘οΌš U(1) A susc. = Low modes οΌ‹ Zero mode ? ∞ 2𝑛 2 (𝑗)2 ) 2 2𝑛 2 (1 βˆ’ πœ‡ ov 1 βˆ† πœŒβˆ’πœ€ = ΰΆ± π‘’πœ‡ 𝜍 πœ‡ ov βˆ† πœŒβˆ’πœ€ ≑ π‘Š(1 βˆ’ 𝑛 2 ) 2 ෍ (πœ‡ 2 + 𝑛 2 ) 2 (𝑗)4 0 πœ‡ ov 𝑗 𝜍 πœ‡ ov integrated up to Ξ» = 0 The factor of 1/πœ‡ 4 enhances zero-mode contribution? subtracted zero mode In π‘Š β†’ ∞ limit, we know zero- πœ‡ ov mode contribution is suppressed: = 2𝑂 0 ov Ξ” 0βˆ’π‘›π‘π‘’π‘“ π‘Šπ‘› 2 (∝ 1/ π‘Š) βˆ’ 2𝑂 0 New order parameter: ov ov ΰ΄₯ Ξ” πœŒβˆ’πœ€ ≑ βˆ† πœŒβˆ’πœ€ π‘Šπ‘› 2 we subtract zero mode 24/Jul/2018 Lattice 2018 11

  12. JLQCD, preliminary (2018) Note οΌ’οΌš U(1) A susc. = Physics οΌ‹ Ultraviolet divergence ? ∞ 2𝑛 2 ov ∝ 𝑛 2 ln Ξ› + β‹― βˆ† πœŒβˆ’πœ€ = ΰΆ± π‘’πœ‡ 𝜍 πœ‡ βˆ† πœŒβˆ’πœ€ (πœ‡ 2 + 𝑛 2 ) 2 0 The term depends on cutoff Ξ› and 𝜍 πœ‡ ~πœ‡ 3 ~1/πœ‡ 4 valence quark mass 𝑛 We assume valence quark mass 𝜍 πœ‡ ov dependence of βˆ† πœŒβˆ’πœ€ (for small m) : βˆ† πœŒβˆ’πœ€ (𝑛) = 𝑏 𝑛 2 + 𝑐 + 𝑑𝑛 2 + 𝑃(𝑛 4 ) πœ‡ ov 𝑛 2 ln Ξ› Zero-mode β‰ˆ (disappears in π‘Š β†’ ∞ ) (disappears in m β†’ 0 ) Ξ› β‡’ From 3 eqs. for βˆ† πœŒβˆ’πœ€ (𝑛 1 ) , βˆ† πœŒβˆ’πœ€ (𝑛 2 ) , βˆ† πœŒβˆ’πœ€ 𝑛 3 , 𝑏 and 𝑑 are eliminated β‡’ βˆ† πœŒβˆ’πœ€ ~ 𝑐 + 𝑃(𝑛 4 ) (, that depends on sea quark mass) 24/Jul/2018 Lattice 2018 12

  13. JLQCD, preliminary (2018) Overlap Dirac spectra at T = 220MeV 𝑛 π‘Ÿ =2.6MeV Low modes suppressed 𝑛 π‘Ÿ =26MeV Low modes enhanced 24/Jul/2018 13

  14. JLQCD, preliminary (2018) U(1) A susceptibility at T = 220MeV ΰ΄₯ Ξ” πœŒβˆ’πœ€ is almost zero β‡’ In the chiral limit, U(1) A will be restored β‡’ At m=2.6MeV, we found suppression of 10 -4 GeV 2 24/Jul/2018 Lattice 2018 14

  15. Large mass region β‡’ large ΰ΄₯ Ξ” πœŒβˆ’πœ€ by low mode enhancement Small mass region β‡’ small ΰ΄₯ Ξ” πœŒβˆ’πœ€ by low mode suppression

  16. JLQCD, preliminary (2018) U(1) A susceptibility (UV-subt. before/after) β‡’ Ultraviolet divergence ( ~ 𝑛 2 ln Ξ› οΌ‰ is subtracted from ΰ΄₯ Ξ” πœŒβˆ’πœ€ 24/Jul/2018 Lattice 2018 16

  17. JLQCD, preliminary (2018) U(1) A susceptibility (UV-subt. before/after) β‡’ Ultraviolet divergence ( ~ 𝑛 2 ln Ξ› οΌ‰ is subtracted from ΰ΄₯ Ξ” πœŒβˆ’πœ€ 24/Jul/2018 Lattice 2018 17

  18. Did we really remove the ultraviolet contribution? Check of cutoff dependence ∞ 2𝑛 2 𝑗 2 ) 2 2𝑛 2 (1 βˆ’ πœ‡ ov 1 βˆ† πœŒβˆ’πœ€ = ΰΆ± π‘’πœ‡ 𝜍 πœ‡ ov βˆ† πœŒβˆ’πœ€ ≑ π‘Š(1 βˆ’ 𝑛 2 ) 2 ෍ (πœ‡ 2 + 𝑛 2 ) 2 (𝑗)4 0 πœ‡ ov 𝑗 40th low modes 𝜍 πœ‡ ov ・・・・・・・・ Lattice cutoff Ξ› β‰ˆ πœ‡ ov To evaluate ΰ΄₯ Ξ” πœŒβˆ’πœ€ , we sum up 40 lowest modes β‡’ Cutoff dependence by the number of low modes 24/Jul/2018 Lattice 2018 18

  19. JLQCD, preliminary (2018) U(1) A susceptibility (cutoff dependence) 40 modes 3 modes β‡’ No cutoff dependence ( saturated by a few low modes οΌ‰ 24/Jul/2018 Lattice 2018 19

  20. JLQCD, preliminary (2018) U(1) A susceptibility (volume effect) Finite V effect enhanced? 48 32 24 β‡’ For small m, V-dependence seems to be small 24/Jul/2018 Lattice 2018 20

  21. JLQCD, preliminary (2018) U(1) A susceptibility (T=220, 330MeV) Low T High T β‡’ With increasing T, U(1) A is more resotored 24/Jul/2018 21

  22. Summary and outlook β€’ In high-temperature phase (π‘ˆ > π‘ˆ 𝑑 ) at 𝑂 𝑔 = 2 , we studied U(1) A susceptibility β€’ Strong suppression in the chiral limit (for T=220-330MeV) β€’ Checked volume and cutoff dependences β€’ Topological susceptibility β‡’ talk by Y. Aoki β€’ Parametrization as function of 𝑛 π‘Ÿ ( larger than 𝑛 π‘Ÿ 2 ? οΌ‰ β€’ Near π‘ˆ 𝑑 ( 𝑂 𝑒 = 14? , chiral transition?) β€’ 𝑂 𝑔 = 2 + 1 sector 24/Jul/2018 Lattice 2018 22

  23. Backup 24/Jul/2018 Lattice 2018 23

  24. S. Aoki, H. Fukaya, and Y. Taniguchi PRD86 (2012), 114512 A. Tomiya et al. (JLQCD) PRD96 (2017), 034509 Note οΌ‘οΌš U(1) A susc. = Low modes οΌ‹ Zero mode ? ∞ 2𝑛 2 βˆ† πœŒβˆ’πœ€ ≑ ΰΆ± π‘’πœ‡ 𝜍 πœ‡ (πœ‡ 2 + 𝑛 2 ) 2 0 𝜍 0βˆ’π‘›π‘π‘’π‘“ πœ‡ = 1 ෍ πœ€(πœ‡) π‘Š 0βˆ’π‘›π‘π‘’π‘“ ∞ 2𝑛 2 π‘’πœ‡ 1 βˆ† zero = ΰΆ± ෍ πœ€(πœ‡) (πœ‡ 2 + 𝑛 2 ) 2 π‘Š 0 0βˆ’π‘›π‘π‘’π‘“ 2𝑛 2 = 1 ෍ 𝑛 4 π‘Š 0βˆ’π‘›π‘π‘’π‘“ = 1 𝑛 2 = 2𝑂 0 2 2 𝑂 𝑀+𝑆 = 𝒫 π‘Š π‘Šβ†’βˆž βˆ† zero = 0 lim ෍ π‘Šπ‘› 2 𝑂 𝑀+𝑆 = 𝒫 π‘Š π‘Š 0βˆ’π‘›π‘π‘’π‘“ Zero mode contributions in βˆ† πœŒβˆ’πœ€ will be suppressed in π‘Š β†’ ∞ limit 24/Jul/2018 Lattice 2018 24

  25. JLQCD, preliminary (2018) U(1) A susceptibility (DW/OV reweighting) β‡’ DW/OV reweighting is crucial in small m region 24/Jul/2018 Lattice 2018 25

  26. JLQCD, preliminary (2018) 𝜍 πœ‡ ov Histogram of topological charge zero mode at T = 220MeV πœ‡ ov 𝑛 π‘Ÿ =2.6MeV 𝑛 π‘Ÿ =10MeV After reweighting, Before After Q=1sector reweighting reweighting survives Large 𝑛 π‘Ÿ : Q β‰  0 sectors appear Small 𝑛 π‘Ÿ : all conf. are Q = 0 sector 2 πœ“ 𝑒 ≑ 𝑅 𝑒 Using , we plot πœ“ 𝑒 π‘Š 24/Jul/2018 Lattice 2018 26

  27. JLQCD, preliminary (2018) Topological susceptibility at T = 220MeV Critical mass? β‡’ In small 𝑛 π‘Ÿ region, πœ“ 𝑒 =0? β‡’ Around 𝑛 π‘Ÿ ~10MeV, we found a jump (critical mass? οΌ‰ 24/Jul/2018 Lattice 2018 27

Recommend


More recommend