inversion in optimal control principles and examples
play

Inversion in optimal control. Principles and examples Nicolas Petit - PowerPoint PPT Presentation

Inversion in optimal control. Principles and examples Nicolas Petit Centre Automatique et Systmes cole des Mines de Paris Knut Graichen Franois Chaplais Outline 1. Receding horizon control (RHC - MPC) 2. Efficient trajectory


  1. Inversion in optimal control. Principles and examples Nicolas Petit Centre Automatique et Systèmes École des Mines de Paris Knut Graichen – François Chaplais

  2. Outline 1. Receding horizon control (RHC - MPC) 2. Efficient trajectory parameterization 3. Examples 4. Indirect methods Conclusions and future developments

  3. 1- Receding Horizon control

  4. Iterating the resolution Bellman’s principle of optimality

  5. In the limit

  6. Lyapunov function

  7. Practical issues

  8. 2 – Efficient trajectories parameterization Direct methods: collocation

  9. Collocation (Hargraves-Paris 1987) Dynamic inversion (Seywald 1994) Eliminating the control variable

  10. Eliminating the maximum number of variables (Petit, Milam, Murray, NOLCOS 01 r : relative degree of z1, zero dynamics, normal form, flatness y stands for Instead of

  11. Comparisons (dim x= n, dim u= 1) Full collocation (Hargraves-Paris) : Ο (n+ 1) Dynamic Inversion (Seywald) : Ο (n) (proposed) Inversion : Ο (n+ 1- r) Successive derivatives are required (substitutions) Dedicated software package

  12. Example

  13. • Collocation Software • Easily computed NTG: Mark Milam, Kudah derivatives: B-splines • Analytic gradients Mushambi, • Frontend to NPSOL Richard Murray, CalTech or: Matlab, Optim. Toolbox, Spline toolbox

  14. 3 – Three examples � CalTech ducted fan � Missile � Mobile robots

  15. CalTech Ducted Fan (M. Milam) Control variables histories Flat outputs : z1 et z2

  16. Trajectory optimization Minimum time transients « terrain avoidance » « Half-turn »

  17. CalTech Ducted Fan (see M. Milam PhD thesis) open loop closed loop terrain avoidance sequence

  18. Minimum time and terrain avoidance NTG receding horizon (update every 0.1s)

  19. Controls: α c, β c Data: m(t), T(t) Missile

  20. Mobile robots

  21. Mobile robots (Vissière, Petit, Martin, ACC 07)

  22. 4 – Indirect methods (Chaplais, Petit, COCV 07)

  23. Solution 1: collocation+ inversion 1 unknown, no differential equation

  24. Solution 2: PMP

  25. Two-point boundary value problem

  26. Solution 3: inversion of the adjoint dynamics

  27. Solution 3 (cont.)

  28. Remarkable points of solution 3 • reduction of CPU time • post-optimal analysis • increased accuracy

  29. Post-optimal analysis

  30. Numerical analysis of higher-order TPBVPs

  31. Second order example (comparisons against exact solution)

  32. General result

  33. Dealing with input/state constraints (Knut Graichen)

  34. Conclusions • Numerous variables can be eliminated from formulations of optimal control problems • Direct or indirect methods • r: relative degree plays a dual role in the adjoint dynamics • Some constrained cases or singular arcs can be treated

  35. Some references Numerical 1. 1. U. M. U. M. Ascher, R. M. M. Ascher, R. M. M. Mattheij, Mattheij, and and R. D. R. D. Russell Russell. solution of boundary value problems for ordinary differential equations . Prentice Hall, Inc., Englewood Cliffs, NJ, 1988. Nonlinear Control Systems . Springer, New York, 2nd 2. 2. A. A. Isidori Isidori. edition, 1989. 3. 3. M. Fliess, J. L é vine, P. M M. Fliess, J. L vine, P. Martin, rtin, and nd P. P. Rouchon Rouchon. Flatness and defect of nonlinear systems: introductory theory and examples. Int. J. Control , 61(6):1327 – 1361, 1995. 4. 4. N. Petit, M. B. N. Petit, M. B. Milam, Milam, and and R. M. Murray . M. Murray. Inversion based constrained trajectory optimization. In 5 th IFAC Symposium on Nonlinear Control Systems , 2001. 5. 5. M. Milam. M. Milam. Real-Time Optimal Trajectory Generation for Constrained Dynamical Systems. . PhD thesis. California Institute of Technology, 2003. 6. 6. K. K. Graichen Graichen. Feedforward Control Design for Finite-Time Transition Problems of Nonlinear Systems with Input and Output Constraints. Doctoral Thesis, Shaker Verlag, 2006. 7. 7. F. F. Chaplais and Chaplais and N. Petit . Petit. Inversion in indirect optimal control of multivariable systems. To appear ESAIM COCV, 2007.

Recommend


More recommend