Introduction • Modeling of highly complex and irregular objects • Cannot be represented with Euclidian Geometry Methods • Fractional Dimension (D) • Self-Similarity
Generation of Fractals Basic Principle F : Transformation Function P 0 (X 0 ,Y 0 ) : Initial Point P 1 = F(P 0 ) P 2 = F(P 1 ) = F(F(P 0 )) P 2 = F(P 2 ) = F(F(P 1 )) = F(F(F(P 0 )))
Generation of Fractals Example
Generation of Fractals Example
Generation of Fractals Example
Generation of Fractals Example
Similarity Ratio 1-D : Line r = 1/n 2-D : Square r = 1/n 1/2 3-D : Cube r = 1/n 1/3
Similarity Ratio D-Dimension : r = 1/n 1/D i.e. D = log(n)/log(1/r) Fractal Dimension
Geometric Fractals • Number of Segments ( N) • Segment Length – Similarity Ratio r • Layout • Fractal Dimension D = log(N) / log(1/r) l • N = 4 • r = l / L = 0.5 • D = 2 L
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Herter-Heighway Dragon N = 2 ; r = 0.5 1/2 ; D = log(2)/log(2 1/2 ) = 2 Generator
Geometric Fractals Sierpinski ’ s Gasket N = 3 ; r = 0.5 ; D = log(3)/log(2) = 1.58 Generator
Geometric Fractals Effect of Dimension on the Fractal Curve Generator D = 1.26
Geometric Fractals Effect of Dimension on the Fractal Curve Generator D = 1.89
Geometric Fractals Effect of Dimension on the Fractal Curve Generator D = 2
Geometric Fractals Effect of Dimension on the Fractal Curve
Geometric Fractals Applications • Coastal Lines ( von Koch curve) • Trees • Textured Objects
Geometric Fractals Applications Coastal Lines ( von Koch Curve )
Geometric Fractals Applications Coastal Lines ( von Koch Curve )
Geometric Fractals Applications Trees Parameterization θ b • Branch angle θ S • Stem branch ratio S/b Tree Generator
Geometric Fractals Applications Trees
Geometric Fractals Applications Textured Objects ( 3-D Fractals )
Recommend
More recommend