interval prediction for continuous time systems with
play

Interval Prediction for Continuous-Time Systems with Parametric - PowerPoint PPT Presentation

Interval Prediction for Continuous-Time Systems with Parametric Uncertainties Edouard Leurent 1 , 2 , Denis Efimov 1 , ssi 3 , Wilfrid Perruquetti 4 Tarek Ra 1 Inria, Lille, France 2 Renault Group, Guyancourt, France 3 CNAM, Paris, France 4


  1. Interval Prediction for Continuous-Time Systems with Parametric Uncertainties Edouard Leurent 1 , 2 , Denis Efimov 1 , ıssi 3 , Wilfrid Perruquetti 4 Tarek Ra¨ 1 Inria, Lille, France 2 Renault Group, Guyancourt, France 3 CNAM, Paris, France 4 Centrale Lille, France

  2. Contents 01.. Problem statement 02.. Our proposed predictor 03.. Application to autonomous driving 2 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  3. 01 Problem statement 3 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  4. Motivation We are interested in trajectory planning for an autonomous vehicle. 1. We need to predict the behaviours of other drivers 2. These behaviours are uncertain and non-linear In order to efficiently capture model uncertainty, we consider the modelling framework of Linear Parameter-Varying systems. 4 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  5. The setting Linear Parameter-Varying systems x ( t ) = A ( θ ( t )) x ( t ) + Bd ( t ) ˙ There are two sources of uncertainty: • Parametric uncertainty θ ( t ) • External perturbations d ( t ) 𝑦 𝑢, 𝜄 𝑢 , 𝑒(𝑢) 𝑦 0 5 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  6. The goal Interval Prediction Can we design an interval predictor [ x ( t ) , x ( t )] that verifies: • inclusion property: ∀ t , x ( t ) ≤ x ( t ) ≤ x ( t ) ; • stable dynamics? We want the predictor to be as tight as possible. 𝑦 𝑢, 𝜄 𝑢 , 𝑒(𝑢) 𝑦 𝑢 , 𝑦 𝑢 𝑦 0 6 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  7. Assumptions Assumption (Bounded trajectories) • � x � ∞ < ∞ • x ( 0 ) ∈ [ x 0 , x 0 ] for some known x 0 , x 0 ∈ R n 7 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  8. Assumptions Assumption (Bounded trajectories) • � x � ∞ < ∞ • x ( 0 ) ∈ [ x 0 , x 0 ] for some known x 0 , x 0 ∈ R n Assumption (Bounded parameters) • θ ( t ) ∈ Θ for some known Θ • The matrix function A ( θ ) is known 7 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  9. Assumptions Assumption (Bounded trajectories) • � x � ∞ < ∞ • x ( 0 ) ∈ [ x 0 , x 0 ] for some known x 0 , x 0 ∈ R n Assumption (Bounded parameters) • θ ( t ) ∈ Θ for some known Θ • The matrix function A ( θ ) is known Assumption (Bounded perturbations) • d ( t ) ∈ [ d ( t ) , d ( t )] for some known signals d , d ∈ L n ∞ How to proceed? 7 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  10. A first idea Assume that x ( t ) ≤ x ( t ) ≤ x ( t ) , for some t ≥ 0. 8 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  11. A first idea Assume that x ( t ) ≤ x ( t ) ≤ x ( t ) , for some t ≥ 0. ë To propagate the interval to x ( t + dt ) , we need to bound A ( θ ( t )) x ( t ) . 8 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  12. A first idea Assume that x ( t ) ≤ x ( t ) ≤ x ( t ) , for some t ≥ 0. ë To propagate the interval to x ( t + dt ) , we need to bound A ( θ ( t )) x ( t ) . ë Why not use interval arithmetics? 8 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  13. A first idea Assume that x ( t ) ≤ x ( t ) ≤ x ( t ) , for some t ≥ 0. ë To propagate the interval to x ( t + dt ) , we need to bound A ( θ ( t )) x ( t ) . ë Why not use interval arithmetics? Lemma (Image of an interval (Efimov et al. 2012)) If A a known matrix, then A + x − A − x ≤ Ax ≤ A + x − A − x . where A + = max( A , 0 ) and A − = A − A + . 8 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  14. A first idea Assume that x ( t ) ≤ x ( t ) ≤ x ( t ) , for some t ≥ 0. ë To propagate the interval to x ( t + dt ) , we need to bound A ( θ ( t )) x ( t ) . ë Why not use interval arithmetics? Lemma (Product of intervals (Efimov et al. 2012)) If A is unknown but bounded A ≤ A ≤ A, A + x + − A + x − − A − x + + A − x − ≤ Ax + x + − A + x − − A − x + + A − x − . ≤ A 8 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  15. A first idea Assume that x ( t ) ≤ x ( t ) ≤ x ( t ) , for some t ≥ 0. ë To propagate the interval to x ( t + dt ) , we need to bound A ( θ ( t )) x ( t ) . ë Why not use interval arithmetics? Lemma (Product of intervals (Efimov et al. 2012)) If A is unknown but bounded A ≤ A ≤ A, A + x + − A + x − − A − x + + A − x − ≤ Ax + x + − A + x − − A − x + + A − x − . ≤ A � Since A ( θ ) and the set Θ are known, we can easily compute such bounds A ≤ A ( θ ( t )) ≤ A 8 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  16. A candidate predictor Following this result, define the predictor: + x − ( t ) − A − x + ( t ) A + x + ( t ) − A x ( t ) ˙ = − x − ( t ) + B + d ( t ) − B − d ( t ) , + A (1) − x + ( t ) + x + ( t ) − A + x − ( t ) − A ˙ x ( t ) = A + A − x − ( t ) + B + d ( t ) − B − d ( t ) , x ( 0 ) = x 0 , x ( 0 ) = x 0 , 9 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  17. A candidate predictor Following this result, define the predictor: + x − ( t ) − A − x + ( t ) A + x + ( t ) − A x ( t ) ˙ = − x − ( t ) + B + d ( t ) − B − d ( t ) , + A (1) − x + ( t ) + x + ( t ) − A + x − ( t ) − A ˙ x ( t ) = A + A − x − ( t ) + B + d ( t ) − B − d ( t ) , x ( 0 ) = x 0 , x ( 0 ) = x 0 , Proposition (Inclusion property) � The predictor (1) satisfies x ( t ) ≤ x ( t ) ≤ x ( t )( t ) 9 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  18. A candidate predictor Following this result, define the predictor: + x − ( t ) − A − x + ( t ) A + x + ( t ) − A x ( t ) ˙ = − x − ( t ) + B + d ( t ) − B − d ( t ) , + A (1) − x + ( t ) + x + ( t ) − A + x − ( t ) − A ˙ x ( t ) = A + A − x − ( t ) + B + d ( t ) − B − d ( t ) , x ( 0 ) = x 0 , x ( 0 ) = x 0 , Proposition (Inclusion property) � The predictor (1) satisfies x ( t ) ≤ x ( t ) ≤ x ( t )( t ) ? But is it stable? 9 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  19. Motivating example Consider the scalar system, for all t ≥ 0:   x ( 0 ) ∈ [ x 0 , x 0 ] = [ 1 . 0 , 1 . 1 ] ,  x ( t ) = − θ ( t ) x ( t ) + d ( t ) , where ˙ θ ( t ) ∈ Θ = [ θ, θ ] = [ 1 , 2 ] ,   d ( t ) ∈ [ d , d ] = [ − 0 . 1 , 0 . 1 ] , 1 . 2 x ( t ) 1 . 0 0 . 8 0 . 6 0 . 4 0 . 2 0 . 0 − 0 . 2 0 1 2 3 4 5 � The system is always stable 10 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  20. Motivating example Consider the scalar system, for all t ≥ 0:   x ( 0 ) ∈ [ x 0 , x 0 ] = [ 1 . 0 , 1 . 1 ] ,  x ( t ) = − θ ( t ) x ( t ) + d ( t ) , where ˙ θ ( t ) ∈ Θ = [ θ, θ ] = [ 1 , 2 ] ,   d ( t ) ∈ [ d , d ] = [ − 0 . 1 , 0 . 1 ] , 1 . 2 x ( t ) 1 . 0 0 . 8 x ( t ) , x ( t ) 0 . 6 0 . 4 0 . 2 0 . 0 − 0 . 2 0 1 2 3 4 5 � The system is always stable ✗ The predictor (1) is unstable 10 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  21. 02 Our proposed predictor 11 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  22. Additional assumption Assumption (Polytopic Structure) There exist A 0 Metzler and ∆ A 0 , · · · , ∆ A N such that: N N � � A ( θ ) = A 0 + λ i ( θ )∆ A i , λ i ( θ ) = 1 ; ∀ θ ∈ Θ ���� � �� � i = 1 i = 1 Nominal ≥ 0 dynamics Δ𝐵 1 Δ𝐵 5 Δ𝐵 2 𝐵 0 𝐵(𝜄) Δ𝐵 4 Δ𝐵 3 12 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  23. Our proposed predictor Denote N N � � ∆ A + ∆ A − ∆ A + = i , ∆ A − = i , i = 1 i = 1 We define the predictor A 0 x ( t ) − ∆ A + x − ( t ) − ∆ A − x + ( t ) x ( t ) ˙ = + B + d ( t ) − B − d ( t ) , ˙ A 0 x ( t ) + ∆ A + x + ( t ) + ∆ A − x − ( t ) x ( t ) = (2) + B + d ( t ) − B − d ( t ) , x ( 0 ) = x 0 , x ( 0 ) = x 0 Theorem (Inclusion property) The predictor (2) ensures x ( t ) ≤ x ( t ) ≤ x ( t ) . 13 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  24. Stability Theorem (Stability) If there exist diagonal matrices P, Q, Q + , Q − , Z + , Z − , Ψ + , Ψ − , Ψ , Γ ∈ R 2 n × 2 n such that the following LMIs are satisfied: P + min { Z + , Z − } > 0 , Υ � 0 , Γ > 0 , Q + min { Q + , Q − } + 2 min { Ψ + , Ψ − } > 0 , where Υ = Υ( A 0 , ∆ A − , ∆ A + , Ψ − , Ψ + , Ψ) , then the predictor (2) is input-to-state stable with respect to the inputs d, d. 14 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

  25. Sketch of proof 1. Define the extended state vector as X = [ x ⊤ x ⊤ ] ⊤ 2. It follows the dynamics ˙ X ( t ) = A X ( t ) + R + X + ( t ) − R − X − ( t ) + δ ( t ) � A 0 � � 0 � � � 0 − ∆ A − ∆ A + 0 A = R + = , R − = 0 0 ∆ A + − ∆ A − 0 A 0 3. Consider a candidate Lyapunov function: V ( X ) = X ⊤ PX + X ⊤ Z + X + − X ⊤ Z − X − 4. V ( X ) is positive definite provided that P + min { Z + , Z − } > 0 , 5. Check on which condition we have ˙ V ( X ) ≤ 0 15 -Interval Prediction with Parametric Uncertainties- Edouard Leurent

Recommend


More recommend