Integrating inconsistent data in a probabilistic model Jiˇ r´ ı Vomlel This presentation is available at http://www.utia.cas.cz/vomlel/
Knowledge integration • Discrete random variables X i indexed by natural numbers from V = { 1, . . . , n } ⊂ N . • Low-dimensional probability distributions P j , j = 1, . . . , k defined on variables { X ℓ } ℓ ∈ E j , E j ⊆ V . • Knowledge integration is the process of building a joint probability distribution Q ( X 1 , . . . , X n ) from a set of low-dimensional probability distributions P = { P 1 , . . . , P k } .
1 2 − α α 1 2 − α α 1 2 − α ? ? X 3 ? ? α X 2 X 1 ? ? α 1 2 − α ? ? 1 2 − α α 1 2 − α α
1 2 − α α 1 2 − α α 1 ≤ α 2 − α ? X 3 ≤ α ? α X 2 X 1 ? ? α 1 2 − α ? ? 1 2 − α α 1 2 − α ≤ + α α 1 ≤ α 1 2 − α α 6
Consistent case 6 4 20 20 4 α = 4 6 20 20 20 3 3 6 20 20 20 X 3 1 3 4 20 20 20 X 2 X 1 3 1 4 20 20 20 3 3 6 20 20 20 4 6 20 20 6 4 20 20
P = { P 1 , . . . , P k } • input set • set of all distributions having P j as its marginal S j = { Q : Q E j = P j } • set of all distributions having { P 1 , . . . , P k } as its marginals S = ∩ k j = 1 S j • I -projection of Q 0 to S π ( Q 0 , S ) = arg min Q ∈S I ( Q � Q 0 ) • Kullback-Leibler divergence = ∑ P ( X = x ) log P ( X = x ) I ( P � Q ) Q ( X = x ) x
Iterative Proportional Fitting Procedure (IPFP) Deming & Stephan, 1940 S 2 S 1 Q ( 1 ) π ( Q ( 1 ) , S 2 ) Q ( 2 ) Q ( 4 ) π ( Q ( 0 ) , S 1 ) π ( Q ( 2 ) , S 3 ) Q ( 3 ) Q ( 0 ) S 3 Q P j π ( Q , S j ) = Q E j
IPFP on the consistent input 0.2 0.18 0.16 0.14 Probability value 0.12 0.1 0.08 0.06 0.04 0.02 IPFP with ordering P1,P2,P3 IPFP with ordering P1,P3,P2 0 0 3 6 9 12 15 Iteration number
Inconsistent case 4 1 10 10 1 α = 1 4 10 10 10 4 ? ? 10 X 3 1 ? ? 10 X 2 X 1 1 ? ? 10 4 ? ? 10 1 4 10 10 4 1 10 10
IPFP on the inconsistent input 0.35 0.3 0.25 Probability value 0.2 0.15 0.1 0.05 IPFP with ordering P1,P2,P3 IPFP with ordering P1,P3,P2 0 0 3 6 9 12 15 18 21 Iteration number
√ − 3 α 2 + 2 α , β = 0.5 ( 1 − α − r ) , and γ = 0.5 ( − α + r ) . Let r = The limit cycle for the ordering P 1 , P 2 , P 3 x 000 001 010 011 100 101 110 111 lim n → ∞ Q 3 n + 1 ( x ) 0 0 α γ β β γ α lim n → ∞ Q 3 n + 2 ( x ) 0 0 γ β α α β γ lim n → ∞ Q 3 n + 3 ( x ) 0 0 β α γ γ α β 1 1 1 1 1 1 arithm. average 0 0 6 6 6 6 6 6 The limit cycle for the ordering P 1 , P 3 , P 2 x 000 001 010 011 100 101 110 111 lim n → ∞ Q 3 n + 1 ( x ) 0 0 α β γ γ β α lim n → ∞ Q 3 n + 2 ( x ) 0 0 γ α β β α γ lim n → ∞ Q 3 n + 3 ( x ) 0 0 β γ α α γ β 1 1 1 1 1 1 arithm. average 0 0 6 6 6 6 6 6 For α = 0.1 we get β . = 0.244 and γ . = 0.156 .
Inconsistent input set P = { P 1 , . . . , P k } It means that S = ∩ k j = 1 S j = ∅ . Q ( X 1 , . . . , X n ) is required to: • minimize a distance aggregate with respect to P : ∑ w j · d ( P j � Q E j ) P j ∈P • factorize with respect to E = { E 1 , . . . , E k } : there exist potentials ψ E i : X E i �→ R , i = 1, 2, . . . , k such that for all x ∈ X ∏ ψ E i ( x E i ) . Q ( x ) = E i ∈E
Distance • measured by the Kullback-Leibler divergence P j ( x E j ) log P j ( x E j ) ( P j � Q E j ) = ∑ d ( P j � Q E j ) = Q E j ( x E j ) x Ej • measured by the total variance | P j − Q E j | = ∑ d ( P j � Q E j ) | P j ( x E j ) − Q E j ( x E j ) | = x Ej
IPFP properties in the inconsistent case • “converges” to a limit cycle • distributions in the limit cycle are different for different orderings of the input set • in the example, the average of the distributions in the limit cycle does not depend on the ordering – but generally, it is not true • in the example, the distributions in the limit cycles minimized the aggregate of the total variance – but generally it is not known • there are also other distributions that minimize the aggregate of the total variance that are not computed with IPFP • generally, the distributions in the limit cycles do not minimize the aggregate of the Kullback-Leibler divergence • distributions computed within a finite number of iterations factorize with respect to E = { E 1 , . . . , E k }
GEMA S 2 S ′ 2 S ′ 1 S 1 π ( Q ( 1 ) , S ′ 2 ) Q ( 1 ) Q ( 2 ) π ( Q ( 0 ) , S 2 ) Q ( 0 ) π ( Q ( 0 ) , S 1 ) π ( Q ( 2 ) , S ′ 3 ) Q ( 0 ) Q ( 3 ) S ′ 3 π ( Q ( 0 ) , S 3 ) π ( Q ( 0 ) , S ′ S 3 1 ) Q ( 3 ) Q ( 0 ) Q ( 0 )
GEMA on the consistent input 0.2 0.18 0.16 0.14 Probability value 0.12 0.1 0.08 0.06 0.04 0.02 GEMA 0 30 60 90 120 150 180 210 Iteration number
GEMA on the inconsistent input set 0.2 0.18 0.16 0.14 Probability value 0.12 0.1 0.08 0.06 0.04 0.02 GEMA 0 30 60 90 120 150 180 210 Iteration number
GEMA properties • converges also in the inconsistent case • the limit distribution satisfies the necessary condition for the local minima of the aggregate of the Kullback-Leibler divergence • the distributions computed within a finite number of iterations factorize with respect to E = { E 1 , . . . , E k }
Recommend
More recommend