Instability and Failure Prediction for Sheet Metal Forming Applications with LS-DYNA André Haufe Dynamore GmbH Industriestraße 2 70565 Stuttgart http://www.dynamore.de LS-Dyna Info-Day 2011 – DYNAmore – Stuttgart – A. Haufe
Motivation LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 2
Technological challenges in the automotive industry Weight Composites High strength steel Safety requirements New materials Light alloys Polymers New power train technology Cost effectiveness Design to the point LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 3
Technological challenges in the automotive industry Weight Composites High strength steel Safety requirements New materials Light alloys Polymers Damage New power train E technology Cost effectiveness max Anisotropy Design to the point c b a Fracture growth Debonding Failure Plasticity E E ( ) e fail true y LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 4
Motivation Lightweight steel/aluminium design! Can we predict failure modes (brittle, ductile, time delayed)? 22MnB5 CP800 TWIP TRIP800 ZE340 Aural LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 5
Motivation Material behavior dependent on local history of loading Micro-alloyed steel Hot-formed steel 900 1800 800 1600 700 1400 600 1200 500 stress stress 1000 400 800 300 600 200 400 100 200 0 0 strain 0.00 0.10 0.20 0.30 0.40 0.50 strain 0,00 0,05 0,10 0 LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 6
Closing the process chain: Standard materials / state of the art Forming simulation Crash simulation v. Mises or Gurson model Hill based models Anisotropiy of yield surface Strain rate dependency Isotropic hardening Kinematic/Isotropic hardening Damage evolution State of the art: Failure by FLD (post-processing) Failure models NEW: Computation of damage (mapping of damage variable) (GISSMO) Mapping II II II I I III III III I LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 7
Preliminary considerations for plane stress LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 8
Plane stress condition Typical discretization with shell elements: xx yy xy yx Principle axis Plane stress Parameterised 0 0 ( , ) 1 1 1 1 σ 0 k 0 ( , ) 2 2 1 0 0 0 0 σ 3 3 k 0 2 1 0 2 1 ( k 1) k 0 1 vm p ( k 1) ( k 1) 1 sign( ) Definition of stress triaxiality: 1 2 3 1 ( k 1) k 3 1 ( k 1) k vm 1 LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 9
Haigh-Westergaard coordinates in principle stress space 1 tr( ) I σ 1 Lode angle 3 3 2 J : s s 2 1 3 3 J Deviatoric 3 arccos plane 1.5 3 2 J 2 p Definition of stress triaxiality: vm LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 10
A toy to visualize stress invariants (downloadable from the www.dynamore.se) page 1: Crafting instructions • Download the PDF-file • Print on thick piece of paper • Cut out where indicated • Add four wooden sticks (15cm) • Add some glue where necessary (engineers should find out the locations without further instructions – all others contact their local distributor) • Have fun! LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 11
A toy to visualize stress invariants (downloadable from the www.dynamore.se) Crafting instructions page 2: • Page 2 of the set may be added for further clarification of the triaxiality variable. Final shape of toy LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 12
Plane stress parameterised for shells p ( k 1) ( k 1) 1 Triaxiality sign( ) 1 2 3 1 ( k 1) k 3 1 ( k 1) k vm 1 Bounds: Compression p ( k 1) 1 lim lim sign( ) sign( ) vm 1 1 3 3 1 ( k 1) k k k tension compression Tension k ( k 1) 1 lim lim sign( ) sign( ) 1 1 3 k k 3 1 ( k 1) k Biaxial tension ( k 1) 2 lim lim sign( ) sign( ) 1 1 3 k 1 k 1 3 1 ( k 1) k LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 13
How to define the accumulation of damage ? A comparison of model approaches Investigation of failure criteria for the following case: 0 Plane stress: 3 and Small elastic deformations: 1 p 1 2 p 2 Damage or failure criteria Isochoric plasticity: 3 p 3 p 1 p 2 4 2 2 1 b b Proportional loading: a p p 1 3 2 1 1 2 b a 2 2 1 a a b 2 b vm 1 2 1 p p p 1 a 3 1 a 2 a vm LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 14
How to define the accumulation of damage ? A comparison of classical model approaches Some typical loading paths LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 15
How to define the accumulation of damage ? A comparison of classical model approaches Some typical loading paths Four criteria Principal strain: 1 max p 1 1 max Equivalent plastic strain: 4 3 2 max 2 1 b 2 b p p 1 max p 1 3 4 1 b 2 b Thinning: p 3 max max p 3 p 1 2 1 b 2 1 b Diffuse necking: 2 2 1 b b p 1 max 1 b 2 b 2 b 2 LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 16
Failure models in the plane of principal strain Failure strain under uniaxial tension is set the same in all 4 criteria. Thinning and FLD predict no failure under pure shear loading. LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 17
Failure models in the plane of major strain vs. b LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 18
Failure models in the plane equivalent plastic strain vs. b Calibrating different criteria to a uniaxial tension test can lead to considerably different response in other load cases. LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 19
Failure models: equivalent plastic strain vs. triaxiality For uniaxial and biaxial tension different criteria lead to a factor of 2: 0.5 2, p 1, p p 1, p 2 1, p 2, p p 1, p LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 20
Johnson-Cook criterion (Hancock-McKenzie ) p d 3 d d e vm pf 1 2 d 0 1 3 d 3 2 1 d e 2 2 1 f Johnson-Cook and FLC are very close in the neighborhood of uniaxial tension. LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 21
Parametrized for 3D stress space LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 22
Lode-angle: Extension- and Compression test III III Possible value for first principle stress II III and 0 I II III and 0 I Compression Compression Extension II II I I 30 30 View not parallel to hydrostatic axis View parallel and on hydrostatic axis (perpendicular to deviator plane) LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 23
3D-Stress state parameterised for volume elements 0 1 0 0 1 F 1 0 0 0 0 1 1 4 0 0 1 1 0 0 1 extension 0 0 0 2 1 0 0 1 4 0 0 0 0 0 0 compression 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 0 1 2 p vm LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 24
Invariants in 3D stress space Failure criterion extd. for 3D solids Parameter definition I m 1 3 vM vM 27 J Stress domain in 3 J s s s mit 3 3 1 2 3 sheet metal forming 2 vM [Source: Wierzbicki et al.] 1 or 30 0 0 or 1 or 30 LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 25
Failure Prediction for UHSS: Adding some damage LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 26
Closing the process chain: Standard materials / state of the art Forming simulation Crash simulation v. Mises or Gurson model Hill based models Anisotropiy of yield surface Strain rate dependency Isotropic hardening Kinematic/Isotropic hardening Damage evolution State of the art: Failure by FLD (post-processing) Failure models NEW: Computation of damage (mapping of damage variable) (GISSMO) Mapping II II II I I III III III I LS-DYNA info-Day 2011 – Stuttgart – A. Haufe 27
Recommend
More recommend