In situ Characterizations of Thin-film Nanostructures with Large-range Direct g g Force Sensing Groupe MAP Manipuler Analyser et Manipuler, Analyser et Percevoir les échelles micro & nanoscopiques Gilgueng Hwang Juan Camilo Acosta Juan Camilo Acosta Stéphane Régnier
Large range high accurate force sensing (nN ~ µN) Motivation Background Objectives � Establish piezoresistive helical nanobelt model considering initial stress � Determine design parameters of large range helical nanobelt force sensor � Determine design parameters of large range helical nanobelt force sensor � Investigating of high frequency piezoresistive helical nanobelt force sensor A Approaches h � Modeling and design of piezoresistive helical nanobelt scrolling process � High resolution force calibration with tunning fork wireless force sensing � Force sensing of ultra-flexible nanostructures (graphene DNA) � Force sensing of ultra flexible nanostructures (graphene, DNA) 2
Potential Impacts on Flexible Nanostructures Range: g Range: Range: 0~1uN 0~6uN Resolution: 30nN D. Golberg, Nano Lett. (2007), X. Bai, Nano Lett. (2007), L. Zhang, APL (2008), V.92 p. V.7 p. 2146 V.7 p. 632-637 243102 Target Objectives Major Tasks Materials/ Mechanical characterizations Buckling, bending, kinking, NEMS NEMS of NWs NTs NBs and etc of NWs, NTs, NBs, and etc. electromechanical electromechanical measurements Biology DNA, protein, cell, fibre, Pulling force measurement, tissues gecko foot hair and tissues, gecko foot hair, and molecular motor adhesion molecular motor, adhesion, etc. Ab/Ag binding force 3
Related Works AFM Cant. Array y CNTs Nanosprings p g Sensors Merits - Resolution - Multiple target - Ultra high resolution -Showed high S - Sample prep. detection - Very compact piezoresistance - In-situ insp. -Compact - No need for particular alignment coefficient from this - Conformity work Smart sensor - Phase cont. po p - Not only imag. Lack of real-time - Limit. to chem. - limit. of controlled fabrication -No force sensor yet Demerits response Biosensing - limit of linear sensing region - Buckling Monodirection - Functionalization - Coupled forces difficulty Tip-sample inter. - Short life-time Pervasivity Complex setup Small range Small range Laser scatt. Liq. Int. into nanorob. 4
I started from � Science � Nanosystem Engineering � � = � Self-scrolling principle � � Controlled fabrication � Actuation: � Artificial Bacteria � Artificial Bacteria flagella � + � Sensing: E E 4 3 2 2 3 4 1 + + + + 2 Force sensors 4 6 4 d d d d d d d d 1 1 2 1 2 1 2 2 E E = 2 1 � (Current Work) r ( ) ( ) + Δ ε + υ 6 1 d d d d 1 2 1 2 � Resonators � R t � d 1 , d 2 : layer thickness. E : Young modulus Golod et al., APL 84, 3391, 2004 � + � Δε : mismatch between bilayer. ν : Poisson’s ratio of the bilayer Grundmann et al., APL 83, 2444, 2003 � Power sourcing: g � Nano inductors Cho et al., Science 313, 1634, 2006 � Resonators Zhang et al., Nano Lett. 6, 1311, 2006 Bell et al., Nano Lett. 6, 725, 2006 � No device: � Not-controlled process! p � No known property, No assembly method 5
Development of Piezoresistive Helical Nanobelt Force Sensor Sensor Schematic Sensing mechanism Force sensing Objectives � Characterization of the piezoresistive helical nanobelts � Design and assembly of the prototype piezoresistive helical nanobelts force sensor � D i d bl f th t t i i ti h li l b lt f � Apply to measure force using the developed force sensor Approaches Approaches � In-situ SEM nanorobotic manipulation system with teleoperated multi robot configuration � Multi-axial piezoresistivity characterization of helical nanobelt with metal connectors � Force calibration of piezoresistive helical nanobelt force sensor GILGUENG HWANG GILGUENG HWANG 6
Objectives and Approaches MEMS process � InGaAs/GaAs nanobelt obtained by self- scrolling of a strained InGaAs layer � Embed metal electrodes G. Hwang et al., Nano Lett., vol. 9, no. 2, pp. 554-561, 2009 In-situ Scanning Electron Microscope nanomanipulation Controller outside SEM Inside SEM chamber Nanomanipulation N p 10 um � 3 D � 3-D nanomanipulation i l ti � Nanometer accuracy G. Hwang et al., Int. J. of Optomecha., vol. 2, no. 2, pp. 88-103, 2008 7
Objectives and Approaches In-situ SEM nanomanipulation In situ SEM nanomanipulation Characterization Nanorobotic assembly Force calibration � Giant piezoresistivity � Prototyped helical � Field-assisted alignment nanobelt force sensor (249~890 x higher pie oresistance piezoresistance coefficient coefficient � Nanosoldering than boron P+ Si � Nano-Newton force piezoresistors) G. Hwang et al., Nano Lett., vol. 9, no. 2, pp. 554 561 2009 554-561, 2009 8
Why Helical Nanobelts? Intrinsic benefit of HNBs Intrinsic benefit of HNBs Wide linear range of sensing High-resolution Ultra-flexible nanostructures 9 9
Parts Fabrications HNB with metal connectors HNB with metal connectors Objective: Objective: assembly easiness assembly easiness Pipette electrode Pipette electrode Metal electrode Metal electrode Glass micropipette Glass micropipette 10 10
Fabrication of Helical Nanobelts HNB with metal connectors HNB with metal connectors MBE Deposition of MBE Deposition of GaAs/AlGaAs/InGaAs/GaAs Cr/Ni/Au Evaporation Metal connectors (a) (e) GaAs Substrate Positive Photolithography Lift-Off (b) ( ) (f) RIE Wet Etch Release (c) (g) Negative Photolithography (f) (d) Metal Metal connecto rs 11 11
In situ SEM Nanomanipulation System � In situ characterization setup � Nanorobotic manipulators � Nanoassembly Setup � Hwang et al., Intl. J. Optomech. 2, 2008 Sensing probe with manipulator � Hwang et al., Proc. IEEE Nano. , 813-818, 2007 12
Longitudinal Piezoresistivity of Helical Nanobelt HNB A 1 2 � Keithley 6517A � Soldered 3 4 � 10 μ m I A � Hwang et al., Nano Lett., 2009 Δ L/L L/L Δ L/L L/L 13
Longitudinal Piezoresistivity of Helical Nanobelt � Elongated 27.5% � R � HNB A � Elongated 3.7% � Compressed p Hysteresis due to changes in � A: 16% of I when 10% of L f f contact resistance contact resistance R+ Δ R R+ ~150 nN � Rcon Δ L/L L/L � increased The slope is constant R con con R con con 3 HNBs showed same behavior R con : Contact resistance 14
Longitudinal Piezoresistivity of Helical Nanobelt Further Analyses � Force Characterization � Finite-element Simulation � Helical Nanobelt in Resonance 15
Comparison with Other Piezoresistors Wide linear range of sensing, high-resolution � Hwang et al., ACS Nano Lett., 9, 554, 2009 Piezo. Coef. Fabrication Π l l [ ρ [E -10 Pa -1 ] ] Si Bulk -1.7~-9.4 MEMS comp. Bn-si -4 MEMS comp. 249~890X higher 249~890X higher SiNW -3.5~-355 Self-assembly piezoresistance coefficient than boron doped P+ Si cantilever CNT -400 Self-assembly y was found by this work f y HNB -399~-3560 Robotic assembly 16
Assembly Overview A: ES. Alignment A: ES. Alignment D: Mag. Alignment E: EBID B: Gold nanoink C: RSW A+(B,C): Repeat 17
In situ SEM Gold Nanoink Soldering Ex situ gold nanoink soldering In situ SEM gold nanoink soldering Wetting Wetting Wetting Wetting force force Dockendorf et al., Appl. Phys. Lett. 2006 � Hwang et al., IEEE Nano. , 2007 Hwang et al., Appl. Phys. Lett. Submitted 2010 Dockendorf, Hwang et al., Appl. Phys. Lett. 2007 18
In situ SEM Gold Nanoink Soldering � Soldering Process & Stability test � Conductivity Improvement Mechanically stabile up to 500 Mechanically stabile up to 500 nN nN � Measurement of Axial Piezoresistivity of HNB � Hwang et al., IEEE Nano. , 2007 Hwang et al., Appl. Phys. Lett. Submitted 2010 19
Helical Nanobelt Force Sensor Dong et al. Nano lett. pp. 58 Dong et al. Nano lett. pp. 58- -63, 2007 63, 2007 Regan et al. Nature, pp. 924 Regan et al. Nature, pp. 924- -927, 2004 927, 2004 Dong et al., APL, pp. 1919 Dong et al., APL, pp. 1919- -1921, 2002 1921, 2002 Tan et al., J. of Physics D, pp. 1998 Tan et al., J. of Physics D, pp. 1998-2008, 2004 , J , J y y , pp , pp 998 998 2008, 2004 008, 008, 00 00 CNTs CNTs HNBs HNBs 20μm 20μm 20μm 20 20μm 20μm 20
Force Sensor Calibration � Δ L afm F F i F i i Δ L afm Resolution of SEM: 100 nm Resolution of SEM: 100 nm 13.2 nN of force steps 13.2 nN of force steps ε Force range: 154 nN Force range: 154 nN i( ε ) Δ R( ε ) F 12 del R/R (%) de / (%) 10 8 6 %] Δ R/R [% 4 2 0 0 Force [nN] 21 Hwang et al., IEEE Ind. Elec. Submitted 2010
Applications: Characterization of Tungsten Nanowire Mechanics Mechanics • Objectives • Objectives • Approaches • Approaches – Use HNB to characterize – To obtain the mechanical the TNW`s mechanical property of TNW for direction property control for applying to devices – Indirect calibration using • Motivation home made nanoprobe home-made nanoprobe – The need to use as-known Th d k mechanical property nanostructures for wide range force sensing – The nanostructure should be as flexible as much flexible as much Takayama, Hwang et al., J. Prec. Eng. (2008) 22
Recommend
More recommend