in condensed matter
play

in condensed matter Grgoire Misguich (IPhT, CEA Saclay) - PowerPoint PPT Presentation

Quantum entanglement in condensed matter Grgoire Misguich (IPhT, CEA Saclay) ipht.cea.fr/Pisp/gregoire.misguich gregoire.misguich@cea.fr IPhT Lectures & Ecole doctorale Physique en le de France (ED -PIF) May 22 th & 29 th ,


  1. Schmidt decomposition (3) – Optimal approximation  What is the best approximation to πœ” with a given lower Schmidt rank πœ“ < 𝑠 ? 𝑠 πœ” = 𝑁 π‘™π‘š 𝑏 𝑙 𝑐 𝑙 = πœ‡ 𝑙 𝑣 𝑙 𝑀 𝑙 πœ‡ 1 β‰₯ πœ‡ 2 β‰₯ β‹― β‰₯ πœ‡ 𝑠 β‰₯ 0 π‘™π‘š 𝑙=1 SVD: 𝑁 = π‘‰π‘‡π‘Š †  Answer: truncate the Schmidt decomposition above, keeping only the πœ“ largest values (and re-normalize the state): πœ“ 1 πœ‡ 𝑙 𝑣 𝑙 𝑀 𝑙 πœ” πœ“ = πœ“ πœ‡ 𝑙 2 1 𝑙=1 1 𝑠 πœ” πœ” πœ“ = 1 βˆ’ πœ‡ 𝑙 2 𝑙=πœ“+1  Β« Proof Β»: Note that the Hilbert space norm is equivalent to Frobenius norm β‹― 𝐺 for the β€’ 2 = Tr 𝑁𝑁 † = 𝑁 π‘™π‘š 2 matrix 𝑁 : 𝑁 𝐺 = πœ” πœ” π‘™π‘š β€’ Use the Eckart and Young theorem (1936), which states that the best approximation (in the sense of β‹― 𝐺 ) of rank πœ“ ≀ 𝑠 to the matrix 𝑁 is the matrix 𝑁 πœ“ obtained by truncating the SVD decomposition of 𝑁 to its πœ“ largest singular values. Remark: the proof of this theorem is somewhat β€œtricky” and not discussed here... Note that this solution to the optimization problem is also optimal for the norm β‹― 2 -- for which the proof is simpler. 12

  2. Schmidt decomposition (4) – SVD on a computer  Complexity for an 𝑁 βˆ— 𝑂 matrix: 𝒫 min 𝑁 βˆ— 𝑂 2 , 𝑂 βˆ— 𝑁 2 NB: To be compared with a two-step procedures: i) Computing 𝜍 𝐡 : 𝒫 𝑂 βˆ— 𝑁 2 and then ii) diagonalizing 𝜍 𝐡 : 𝒫 𝑁 3 .  LAPACK: dgesvd  GSL: gsl_linalg_SV_decomp  Numerically stable  Sometimes the SVD is overkill if the Schmidt values are not needed (just some orthogonal basis on one β€œside”, as often in DMRG for instance) and a QR factorization is enough (faster). 13

  3. SVD, decay of the singular values & data compression (2) 14

  4. SVD, decay of the singular values & data compression (1) An (color) image viewed as a (three) matrix(ces) 15

  5. Von Neumann entropy (definition)  Von Neumann/entanglement entropy 𝑇 𝐡 = βˆ’Tr 𝐢 𝜍 𝐡 log 𝜍 𝐡 = βˆ’ π‘ž 𝑗 log π‘ž 𝑗 𝑗 With 𝜍 𝐡 = Tr 𝐢 𝜍 𝐡𝐢 , and π‘ž 𝑗 the eigenvalues of 𝜍 𝐡 .  𝑇 𝐡 = 0 ⟺ 𝜍 𝐡 is a projector ⟺ πœ” is a product state ⟺ region 𝐡 is in a pure state Remark: For a thermal density matrix 𝜍~𝑓 βˆ’π›ΎπΌ , the same formula gives the Boltzmann- Gibbs entropy β€œ You should call it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics under that name, so it already has a name. In the second place, and more important, no one really knows what entropy really is, so in a debate you will always have the advantage. ” J. Von Neumann, suggesting to Claude Shannon a name for his new uncertainty function, as quoted in Scientific American 225, 3, p180 (1971). 16

  6. Von Neumann entropy – basic properties  𝑇 𝜍 is zero if and only if 𝜍 represents a pure state (projector)  𝑇 𝜍 is maximal and equal to log 𝑂 for a maximally mixed state, 𝑂 being the dimension of the Hilbert space.  𝑇 𝜍 is invariant under changes in the basis of 𝜍 , that is, 𝑇 𝜍 = 𝑇 π‘‰πœπ‘‰ † , with 𝑉 unitary.  Concavity 𝑇 πœ‡ 𝑗 𝜍 𝑗 β‰₯ πœ‡ 𝑗 𝑇 𝜍 𝑗 𝑗 𝑗  Independent systems : 𝑇 𝜍 𝐡 βŠ— 𝜍 𝐢 = 𝑇 𝜍 𝐡 + 𝑇 𝜍 𝐢  If 𝜍 𝐡𝐢 describe a pure state, 𝑇 𝜍 𝐢 = 𝑇 𝜍 𝐡 (proof using the Schmidt decomposition, see next)  A,B,C: 3 parts, without intersection Strong sub-additivity [SS] 𝑇 𝜍 𝐡𝐢𝐷 + 𝑇 𝜍 𝐢 ≀ 𝑇 𝜍 𝐡𝐢 + 𝑇 𝜍 𝐢𝐷 β€’ β€’ Equivalent formulation: 𝑇 π‘Œβˆͺ𝑍 + 𝑇 π‘Œβˆ©π‘ ≀ 𝑇 π‘Œ + 𝑇 𝑍 Proof: difficult ! E. H. Lieb, M. B. Ruskai, β€œProof of the Strong Subadditivity of Quantum Mechanichal Entropy ” , J. Math. Phys. 14, 1938 (1973) β€’ Subadditivity 𝑇 𝜍 𝐡𝐷 ≀ 𝑇 𝜍 𝐡 + 𝑇 𝜍 𝐷 (obtained by setting 𝐢 = βˆ… in SS above, but direct proof is possible a much much simpler than SS)  Araki-Lieb triangular inequality: 𝑇 𝜍 𝐡𝐷 β‰₯ 𝑇 𝜍 𝐡 βˆ’ 𝑇 𝜍 𝐷 Simple proof using i) some auxiliary pure state 𝜍 𝐡𝐢𝐷 in some enlarged space such that Tr B 𝜍 𝐡𝐢𝐷 = 𝜍 𝐡𝐷 , Tr 𝐢𝐷 𝜍 𝐡𝐢𝐷 = 𝜍 𝐡 and Tr 𝐡𝐢 𝜍 𝐡𝐢𝐷 = 𝜍 𝐷 , ii) the sub-additivity above for 𝜍 𝐢𝐷 and iii) 𝑇 𝜍 𝐢𝐷 = 𝑇 𝜍 𝐡 and 𝑇 𝜍 𝐢 = 𝑇 𝜍 𝐡𝐷 (since 𝜍 𝐡𝐢𝐷 is pure). 17

  7. A simple exercise with strong subadditivity  Let 𝑇(𝑦) be the entanglement entropy of a segment of length 𝑦 in a periodic and translation invariant spin chain of total length 𝑀 (in a pure state).  How to prove that 𝑇(𝑦) is a concave function of 𝑦 and that it is maximal for 𝑦 = 𝑀/2 ? (unless it is constant and equal to zero) . 𝑇(𝑦) 𝑦 x  Answer: use the strong sub-additivity with the three following consecutive segments 𝐡 = {0} , 𝐢 = {1,2, … , 𝑦 βˆ’ 1} and 𝐷 = {𝑦} : 𝑇 𝐡𝐢𝐷 + 𝑇 𝐢 ≀ 𝑇 𝐡𝐢 + 𝑇 𝐢𝐷 𝑇 x + 1 + S x βˆ’ 1 ≀ 2𝑇 𝑦 β†’ concavity + symmetry 𝑇(𝑦) = 𝑇(𝑀 βˆ’ 𝑦) 18

  8. RΓ©nyi entropies & Replica trick  If you can compute the spectrum of 𝜍 𝐡 … then you get 𝑇 𝐡 by summing over all the eigenvalues: 𝑇 𝐡 = βˆ’Tr 𝜍 𝐡 log 𝜍 𝐡 = βˆ’ π‘ž 𝑗 log π‘ž 𝑗 𝑗  If not… you can compute Tr 𝜍 π΅π‘œ for integer π‘œ β‰₯ 2 (easier than computing the spectrum) β€’ (cross your fingers &) analytically continue the result to n=1 β€’ β€’ use: 1 1 βˆ’ π‘œ log Tr 𝜍 π΅π‘œ βˆ’Tr 𝜍 𝐡 log 𝜍 𝐡 = lim π‘œβ†’1  RΓ©nyi entropies are also often interesting, and simpler to compute & measure [in principle] 1 1 βˆ’ π‘œ log Tr 𝜍 π΅π‘œ 𝑇 𝐡 (π‘œ) = NB: RΓ©nyi entropies (integer π‘œ β‰₯ 2 ) can be measured in Quantum Monte Carlo: β€œ Measuring RΓ©nyi Entanglement Entropy in Quantum Monte Carlo Simulations ” M. B. Hastings, I. GonzΓ‘lez, A. B. Kallin, and R. G. Melko, Phys. Rev. Lett. 104, 157201 (2010)  They share some properties with the Von Neumann entropy: Positive 𝑇 𝐡 π‘œ β‰₯ 0 β€’ Additive for uncorrelated systems 𝑇 𝐡𝐢 π‘œ = 𝑇 𝐡 π‘œ + 𝑇 𝐢 π‘œ if 𝜍 𝐡𝐢 = 𝜍 𝐡 β¨‚πœ 𝐢 β€’ β€’ But no subadditivity 19

  9. Entanglement spectrum - definition πœ” = πœ‡ 𝑗 𝑏 𝑗 𝑐 𝑗 Schmidt decomposition 𝑗 π‘ž 𝑗 = πœ‡ 𝑗 2 , πœ‡ 𝑗 > 0 , π‘ž 𝑗 = 1 𝑗 Interpret the eigenvalues of 𝜍 𝐡 π‘ž 𝑗 = exp βˆ’πΉ 𝑗 with Z π‘œ = 𝑓 βˆ’π‘œπΉ 𝑗 as classical Boltzmann weights. π‘Ž 1 This defines some β€œenergies” 𝐹 𝑗 𝑗 Tr 𝜍 π΅π‘œ = π‘ž 𝑗 π‘œ = π‘Ž π‘œ π‘Ž π‘œ : Partition function at inverse π‘Ž 1 1 𝑗 temperature π‘ˆ = 𝛾 = π‘œ 1 𝑓 βˆ’πΉ 𝑗 2 𝑏 𝑗 𝑐 𝑗 πœ” = π‘Ž 1 𝑗 Free energy 𝐺 π‘œ = βˆ’ 1 = βˆ’ 1 = 1 n 𝐺 1 βˆ’ 1 n log π‘Ž 1 Tr 𝜍 π΅π‘œ n log Tr 𝜍 π΅π‘œ n log Z n RΓ©nyi entropy ↔ free energy difference 1 1 1 βˆ’ n log Tr 𝜍 π΅π‘œ 𝑇 𝐡 π‘œ = = π‘œ βˆ’ 1 π‘œπΊ π‘œ βˆ’ 𝐺 1 20

  10. HOW TO MEASURE ENTANGLEMENT ENTROPIES ? at least in principle… 21

  11. Experimental measurement of entanglement ?  Few q- bits β†’ measure sufficiently many correlations/observables in order to reconstruct the complete density matrix (quantum state tomography)  Examples: nuclear spins I=1/2 or photon polarizations (H/V): β€œPhoton entanglement detection by a single atom” J. Huwer et al 2013 New J. Phys. 15 025033 β€œSolving Quantum Ground-State Problems with NMR” Zhaokai Li et al., Scientific Reports 1, 88 (2012)  What about the entanglement entropy of a large system ? 22

  12. Measurement of entanglement entropies ? (1)  A few proposals based on coupling π‘œ copies of the system to measure the entropy 𝑇 π‘œ  Example : β€œMeasuring Entanglement Entropy of a Generic Many-Body System with a Quantum Switch” D. A. Abanin & E. Demler, Phys. Rev. Lett. 109, 020504 (2012) We describe here the simplest case, with π‘œ = 2 . L R Finite chain & left/right πœ” = πœ‡ 𝑗 π‘š 𝑗 ⨂ 𝑠 𝑗 Schmidt decomposition 𝑗 2 = βˆ’ log πœ‡ 𝑗 4  Goal: β€œmeasure” the RΓ©nyi entropy 𝑇 π‘œ=2 , that is βˆ’log Tr 𝑆 𝜍 𝑀 𝑗  4 half-chains, that can be connected in two different ways: L1 L1 R1 R1 or R2 L2 L2 R2 𝐻 = πœ‡ 𝑗 π‘š 𝑗 𝑀1 ⨂ 𝑠 𝑗 𝑆1 ⨂ πœ‡ π‘˜ π‘š π‘˜ 𝑀2 ⨂ 𝑠 π‘˜ 𝑆2 𝐻′ = πœ‡ 𝑗 π‘š 𝑗 𝑀1 ⨂ 𝑠 𝑗 𝑆2 ⨂ πœ‡ π‘˜ π‘š π‘˜ 𝑀2 ⨂ 𝑠 π‘˜ 𝑆1 𝑗 π‘˜ 𝑗 π‘˜ β€œquantum switch” 23

  13. Measurement of entanglement entropies ? (2)  RΓ©nyi entropy 𝑇 π‘œ and scalar product L1 L1 R1 R1 or R2 L2 L2 R2 𝐻 = πœ‡ 𝑗 π‘š 𝑗 𝑀1 ⨂ 𝑠 𝑗 𝑆1 ⨂ πœ‡ π‘˜ π‘š π‘˜ 𝑀2 ⨂ 𝑠 π‘˜ 𝑆2 𝐻′ = πœ‡ 𝑙 π‘š 𝑙 𝑀1 ⨂ 𝑠 𝑙 𝑆2 ⨂ πœ‡ π‘š π‘š π‘š 𝑀2 ⨂ 𝑠 π‘š 𝑆1 𝑗 π‘˜ 𝑙 π‘š π‘˜π‘™ = πœ‡ 𝑗 4 2 𝐻 𝐻′ = πœ‡ 𝑗 πœ‡ π‘˜ πœ‡ 𝑙 πœ‡ π‘š πœ€ 𝑗𝑙 πœ€ π‘—π‘š πœ€ π‘˜π‘š πœ€ = Tr 𝑆 𝜍 𝑀 = exp βˆ’π‘‡ 2 π‘—π‘˜π‘™π‘š 𝑗  Introduce a weak transverse field on the central spin (quantum switch ) +𝐾𝜏 𝑦 0 𝐾 𝐻 𝐻′ 𝐼 eff = 𝐾 𝐻 𝐻′ 0 Degenerate perturbation theory Ξ” Ξ” Eigenvalues πœ• = ±𝐾 𝐻 𝐻′ ( 𝐾 β‰ͺ Ξ” ) 𝐻 𝐻′ Measure the oscillation frequency πœ• of 𝜏 𝑨 (𝑒) β†’ access to exp βˆ’π‘‡ 2 𝜏 𝑨 = βˆ’1 𝜏 𝑨 = +1 generalization: couple π‘œ systems and a 2-state switch to measure 𝑇 π‘œ 24

  14. Summary of lecture #1 B A β€’ Context: lattice quantum many- body problems (spin, fermions, …) Two large subsystems in a pure state πœ” ∈ β„‹ 𝐡 ⨂ℋ 𝐢 . β€’ The total density matrix 𝜍 𝐡𝐢 = πœ” πœ” is a projector β€’ Reduced density matrix: 𝜍 𝐡 = Tr 𝐢 𝜍 𝐡𝐢 Tr A 𝜍 𝐡 = Tr A𝐢 𝜍 𝐡𝐢 = 1 β€’ Shmidt decomposition of πœ” : β€’ πœ” = 𝑁 π‘—π‘˜ 𝑏 𝑗 ⨂ 𝑐 π‘˜ =β†’ SVD of 𝑁 β†’= πœ‡ 𝑙 𝑣 𝑙 ⨂ 𝑀 𝑙 π‘—π‘˜ 𝑙 Spectrum of the RDM: 𝜍 𝐡 = πœ‡ 𝑙 2 𝑣 𝑙 𝑣 𝑙 β€’ 𝑙 β€’ Von Neumann entropy 𝑇 𝐡 = βˆ’Tr 𝐢 𝜍 𝐡 log 𝜍 𝐡 = βˆ’ πœ‡ 𝑙 2 log πœ‡ 𝑙 2 𝑗 𝑇 𝐡 quantifies the uncertainty on the state of 𝐡 if we do not observe the region 𝐢 . β€’ 𝑇 𝐡 = 0 ⟺ 𝜍 𝐡 is a projector ⟺ πœ” = 𝐡 ⨂ 𝐢 is a product state β€’ Strong sub-additivity of the Von Neumann entropy: 𝑇 π‘Œβˆͺ𝑍 + 𝑇 π‘Œβˆ©π‘ ≀ 𝑇 π‘Œ + 𝑇 𝑍 β€’ 1 1βˆ’π‘œ log Tr 𝜍 π΅π‘œ Useful generalization: RΓ©nyi entropies 𝑇 𝐡 (π‘œ) = β€’ β€’ 𝑇 𝐡 (π‘œ) is often simpler to compute (and possibly to measure experimentally) than 𝑇 𝐡 when π‘œ is an integer β‰₯ 2 (replicas, etc.). π‘œ plays the role of an inverse temperature. Finite correlation length β†’ area law 𝑇 𝐡 ∼ 𝒫 Area of πœ–π΅ = 𝒫 𝑀 π‘’βˆ’1 . β€’ 25

  15. AREA/BOUNDARY LAW for the entanglement entropy of low-energy states of short-ranged Hamiltonians. Decay of Schmidt eigenvalues. 26

  16. Area law for the entanglement entropy β€œ Quantum source of entropy for black holes ” L. Bombelli, R. K. Koul, J. Lee, and R. D. Sorkin, Phys. Rev. D 34, 373 (1986) Β« Entropy and area Β», M. Srednicki, Phys. Rev. Lett. 71 , 666 (1993) β€œ Area Laws in Quantum Systems: Mutual Information and Correlations ” M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys. Rev. Lett. 100, 070502 (2008) β€œColloquium : Area laws for the entanglement entropy” J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys. 82, 277 (2010)  The ground-state (and low-energy excitations) of (many) Hamiltonians with short- L ranged interactions have an entanglement entropy which scale like the area of the boundary of the subsystem A 𝑇 𝐡 ∼ 𝒫 Area of πœ–π΅ = 𝒫 𝑀 π‘’βˆ’1 Appears to be valid for all gapped systems (in 𝒆 = 𝟐 it’s a theorem), β€’ B and some gapless systems in 𝒆 > 𝟐 (not all). β€’ Known gapless systems which violate the area law: critical systems in 𝑒 = 1 o systems in 𝑒 > 1 with a Fermi surface, where 𝑇 𝐡 ∼ 𝒫 𝑀 π‘’βˆ’1 log 𝑀 o β€’ Can be proved in any dimension if we make a strong hypothesis on the decay of all correlations (Wolf et al. 2008 ), see a few slide below. 27

  17. Area law for the entanglement entropy  Simple (hand-waving!) argument Pure state πœ” , ground state of some local Hamiltonian in β€’ spatial dimension 𝑒 . Asumme that all connected correlation functions in πœ” β€’ decay exponentially in space, with some finite correlation length 𝜊 β€’ Subsystem: some spatial region 𝐡 of typical size L ≫ 𝜊 . ( 𝐢 =complement of 𝐡 ). L Assume that the entanglement between 𝐡 and 𝐢 β€’ is entirely due to local correlations (not a very precise statement…) A οƒ˜ Correlations between degrees of freedom located inside 𝐡 do not contribute to 𝑇 𝐡 . Same for correlations inside the region 𝐢 . 𝝄 οƒ˜ The only contributions to the entanglement entropy 𝑇 𝐡 are B those originating from correlations taking place across the boundary between A and B β†’ Area/ Boundary law for the entanglement entropy : 𝑇 𝐡 ~size of πœ–π΅ ~𝑀 π‘’βˆ’1 28

  18. Area law for the entanglement entropy B A  Variant of the intuitive argument … L Correlation length 𝜊 𝑗 = 1 β‹― ~2 πœŠπ‘€ configurations for the magenta sites ( ∈ A) π‘˜ = 1 β‹― ~2 πœŠπ‘€ configurations for the blue sites ( ∈ B) Assume the wave function can be approximated by : 𝐡 ⨂ πœ” π‘˜ 𝐢 πœ” ∼ 𝑁 𝑗,π‘˜ πœ” 𝑗 𝑗,π‘˜ Which means, that, once we project on a particular state (i,j) of the Β« boundary region Β» (of width ~𝜊 ), the regions A and B are no longer correlated ( β†’ product state). Schmidt decompostion (=SVD of M) β†’ number of non-zero values ~2 πœŠπ‘€ 𝑇 𝐡 ≀ πœŠπ‘€ log 2 β†’ boundary law 29

  19. Remark about the area law & entanglement spectrum  𝑇 𝐡 = thermodynamic entropy of the entanglement spectrum 𝐹 𝑗 (by definition) Assume these 𝐹 𝑗 are energies of some β€œfictitious system” associated to the bi - partition A/B.  Since 𝑇 𝐡 ~𝑀 π‘’βˆ’1 can be interpreted as a β€œvolume law” (as usual for thermodynamic entropy) for a system in 𝑒 βˆ’ 1 spatial dimension, the β€œfictitious system” probably lives at the boundary between A & B . We will see a few explicit examples later (β€œbulk - edge correspondence”) Note: this is consistent with the fact that the spectrum of 𝜍 𝐡 (hence the 𝐹 𝑗 ) is unchanged if we exchange A and B.  If the number of Schmidt eigenvalues which contribute to entropy is a finite fraction of the dimension dim (𝐼 𝐡 ) (assume region B is much larger, for simplicity) , we expect a volume-law behavior. If, instead, 𝑇 𝐡 ~𝑀 π‘’βˆ’1 , then we expect that most of the eigenvalues of 𝜍 𝐡 are much smaller than 1/dim (𝐼 𝐡 ) . 30

  20. Mutual information  Definition: 𝐡 𝐽 𝐡: 𝐢 = 𝑇 𝜍 A + 𝑇 𝜍 𝐢 βˆ’ 𝑇 𝜍 AB 𝐢 (with 𝑇 𝜍 = βˆ’Tr 𝜍 log 𝜍 ) .  Alternatively: 𝐽 𝐡: 𝐢 = Tr 𝜍 AB log 𝜍 AB βˆ’ log 𝜍 A β¨‚πœ 𝐢  Thanks to the sub-additivity of the Von Neumann entropy we have 𝐽 𝐡: 𝐢 β‰₯ 0 . 1 2 (=Pinsker inequality). A stronger result is: 𝐽 𝐡: 𝐢 β‰₯ 2 𝜍 AB βˆ’ 𝜍 A β¨‚πœ 𝐢 1 β†’ 𝐽 𝐡: 𝐢 can be viewed as some kind of β€œdistance” between 𝜍 AB and 𝜍 A β¨‚πœ 𝐢 . In particular: 𝐽 𝐡: 𝐢 = 0 ⇔ 𝜍 AB = 𝜍 A β¨‚πœ 𝐢 .  𝐽 𝐡: 𝐢 measures the total amount of correlations between A and B. Indeed, 𝐽 𝐡: 𝐢 can be shown (using the Pinsker inequality above β†’ exercise !) to give a bound on correlators: 2 𝑃 𝐡 𝑃 𝐢 βˆ’ 𝑃 𝐡 𝑃 𝐢 𝐽 𝐡: 𝐢 β‰₯ 2 𝑃 𝐢 1 2 2 𝑃 𝐡 1  𝐽 𝐡: 𝐢 = 0 then all correlations between 𝐡 and 𝐢 must vanish. If 𝐽 𝐡: 𝐢 decays exponentially with their distance, it will be also the case for any correlation between 𝐡 and 𝐢 .  Remark 1: if 𝐡𝐢 is in a pure state ( 𝜍 AB = πœ” πœ” ) we have 𝑇 𝜍 AB = 0 . So: 𝐽 𝐡: 𝐢 = 2𝑇 𝜍 A = 2𝑇 𝜍 B is equivalent to the Von Neumann entropy.  Remark 2: the β€œvolume” contributions to the entropy cancel out in 𝐽 𝐡: 𝐢 . β†’ An area law is expected (see next slide) 31

  21. Mutual information & boundary law at T>0 β€œ Area Laws in Quantum Systems: Mutual Information and Correlations ”, M. M. Wolf, F. 𝐢 Verstraete, M. B. Hastings, and J. I. Cirac, Phys. Rev. Lett. 100, 070502 (2008) 𝐡 𝐼 π‘—π‘œπ‘’ 1 𝛾 𝑇(𝜍) is minimized by 𝜍 𝐡𝐢 ~𝑓 βˆ’π›ΎπΌ  Free energy 𝐺 𝜍 = 𝑉 βˆ’ π‘ˆπ‘‡ = Tr 𝐼𝜍 βˆ’ with 𝐼 = 𝐼 𝐡 + 𝐼 𝐢 + 𝐼 π‘—π‘œπ‘’ . 𝐼 π‘—π‘œπ‘’ contains all the terms which couple 𝐡 and 𝐢 .  In particular: 𝐺 𝜍 ≀ 𝐺 𝜍 A β¨‚πœ B . So: Tr 𝐼𝜍 βˆ’ 1 βˆ’ 1 𝛾 𝑇 𝜍 ≀ Tr 𝐼 𝐡 + 𝐼 𝐢 + 𝐼 π‘—π‘œπ‘’ 𝜍 𝐡 β¨‚πœ 𝐢 𝛾 𝑇 𝜍 A + 𝑇 𝜍 B 𝐽 𝐡: 𝐢 ≀ Tr 𝐼 π‘—π‘œπ‘’ 𝜍 𝐡 β¨‚πœ 𝐢 βˆ’ 𝜍 ~𝒫(Area) 𝛾 οƒ˜ This demonstrates an area law behavior for 𝐽 𝐡: 𝐢 at finite temperature .  Remark: no general theorem for the area law at π‘ˆ = 0 in d>1, although it is verified by a large class of systems (notable exception: states with Fermi surface). See however the argument on next slide. 32

  22. Area law at π‘ˆ = 0 β€œ Area Laws in Quantum Systems: Mutual Information and Correlations ”, M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac, Phys. Rev. Lett. 100, 070502 (2008)  Geometry: 𝐡 and 𝐢 are separated by some distance 𝑀 . The β€œshell” in 𝐢 between is the region 𝐷 . Define 𝐽 𝑀 = 𝐽 𝐡: 𝐢 = mutual information 𝐷  Using strong subadditivity one can show that 𝐽 𝑀 is a decreasing function of 𝑀 𝑀 (exercise!). Define the correlation length 𝝄 as the minimal distance 𝐡 𝑆 𝑱 𝟏 which insures 𝑱 𝑴 ≀ πŸ‘ for all 𝑺 .  Remarks: β€’ This correlation length incorporates all types of correlations between 𝐡 and the rest of the system. β€’ It may be infinite in some cases. From now we assume it is finite, and take 𝑀 = 𝜊.  Use sub-additivity and the Araki-Lieb triangular inequality to show (exercise!): 𝐽 𝐡: 𝐢𝐷 ≀ 𝐽 𝐡: 𝐢 + 2𝑇 𝐷 𝐽 0  By construction 𝐽(𝐡: 𝐢𝐷) = 𝐽 0 and 𝐽 𝐡: 𝐢 = 𝐽 𝑀 . By def. of 𝜊 we have 𝐽 𝑀 ≀ 2 , so: 𝐽 0 ≀ 𝐽 𝑀 + 2𝑇 𝐷 ≀ 𝐽 0 2 + 2𝑇 𝐷 . Hence 𝐽 0 ≀ 4𝑇 𝐷 . Since 𝑇 𝐷 is bounded by its volume 𝐷 ∼ 𝜊 πœ–π΅ . We get 𝐽 0 ≀ 4𝜊 πœ–π΅ . Now if the entire system 𝐡𝐢𝐷 in a pure state (no necessary so far) we have 𝐽 𝐡: 𝐢𝐷 = 𝐽 0 = 2𝑇 𝐡 and finally: 𝑇 𝐡 ≀ 2𝜊 πœ–π΅ 33

  23. Area/boundary law 1d gapped system M B Hastings J. Stat. Mech. (2007) P08024 34

  24. Universal violations & corrections to the area law A few examples (non-exhaustive list)  Violation (multiplicative log: ∼ L π‘’βˆ’1 log 𝑀 ) Critical systems in 𝑒 = 1 β€’ Holzhey-Larsen-Wilczek 1994, Vidal-Latorre-Rico-Kitaev 2003, Calabrese-Cardy 2004, … β€’ Fermi surface (Wolf 2006, Gioev & Klich 2006)  Corrections (additive log: 𝒫 𝑀 π‘’βˆ’1 + 𝒫 log 𝑀 ) β€’ Some critical systems in 𝑒 = 2 , with sharp-corners (Fradkin-Moore 2006) β€’ Countinuous sym. breaking (Nambu-Golstone modes) Metlitsky-Grover 2011, Luitz-Plat-Alet-Laflorencie 2015  Correction (constant terms: 𝒫 𝑀 π‘’βˆ’1 + 𝒫 𝑀 0 ) Discrete spontaneous sym. breaking (β†’ contributtion S 0 = log degeneracy ) β€’ Topological order in 𝑒 = 2 ( Kitaev-Preskill 2006, Levin-Wen 2006 ) β€’ Some (Lorentz-invariant) critical systems in 𝑒 = 2 (Casini-Huerta 2007,+ many others ...) β€’ Some critical systems in 𝑒 = 2 (Hsu et al. 2009, StΓ©phan-Furukawa-GM-Pasquier 2009) β€’ Concerning critical systems, see the (very) recent work by B. Swingle & J. McGreevy, arXiv:1505.07106 35

  25. VOLUME LAW for high-energy states, relation between entanglement and thermal entropies 36

  26. Comparison with random pure states  β€œAverage entropy of a subsystem”, D. Page, Phys. Rev. Lett. (1993) … = … whole Hilbert space β„‹ 𝐡 ⨂ℋ 𝐢 (Haar measure) Assume dim β„‹ 𝐡 ≀ dim β„‹ 𝐢 : 2dim β„‹ 𝐢 ~𝒫 𝑀 𝑒 = Volume law dim β„‹ 𝐡 𝑇 𝐡 = βˆ’ Tr 𝜍 𝐡 log 𝜍 𝐡 = log dim β„‹ βˆ’ 𝐡  For the full probability distribution of 𝑇 𝐡 , see C. Nadal, S. N. Majumdar, and M. Vergassola, Phys Rev Lett 104, 110501 (2010) (random matrix model methods) β†’The probability distribution is highly peaked around the average value 𝐡 βˆ’2 ) ) and the scaling of the typical entropy is a (variance Var(S A )~𝒫(dim β„‹ also a volume law. β†’ States satisfying an area law are rare  Choose a subsystem 𝐡 such that 1 β‰ͺ dim β„‹ 𝐡 = 𝑛 ≀ dim β„‹ 𝐢 = π‘œ . 𝐡 ⨂ℋ 𝐢 , and you will find 𝑇 𝐡 ~ log 𝑛 βˆ’ 𝑛 1. Pick a pure state at random in β„‹ 2π‘œ . 2. Now consider the infinite-temperature density matrix for the region 𝐡 : π‘ˆ=∞ = Id m π‘ˆ=∞ = log 𝑛 . 𝜍 𝐡 m . It gives 𝑇 𝐡 𝑛 3. Conclusion: when the region 𝐢 is large (i.e. π‘œ β‰ͺ 1 ) you can hardly distinguish the two situations. 37

  27. ETH, entanglement entropy & thermal entropy (1)  Hamiltonian 𝐼 = 𝐹 𝛽 𝛽 𝛽 𝛽  The initial state is a linear combination of eigenstates which lie in a small energy windows 𝐹 βˆ’ Δ𝐹, 𝐹 + Δ𝐹 ( 𝐹 is extensive (above the ground state) whereas Δ𝐹~𝒫(1) ): πœ” = 𝑑 𝛽 𝛽 𝛽  Time evolution: πœ”(𝑒) = 𝑑 𝛽 𝑓 βˆ’π‘—πΉ 𝛽 𝑒 𝛽 𝛽  Expectation value of some observable 𝐡: + 𝐡 𝛽𝛾 𝑑 𝛽 𝑑 𝛾 𝑓 βˆ’π‘—(𝐹 𝛾 βˆ’πΉ 𝛽 )𝑒 πœ”(𝑒) 𝐡 πœ”(𝑒) = 𝑑 𝛽 2 𝐡 𝛽𝛽 𝛽 𝛽≠𝛾  Long-time average (assume no degeneracy): 𝑓 βˆ’π‘—(𝐹 𝛾 βˆ’πΉ 𝛽 )𝜐 βˆ’ 1 𝜐 1 = 𝑑 𝛽 2 𝐡 𝛽𝛽 𝜐 πœ”(𝑒) 𝐡 πœ”(𝑒) 𝑒𝑒 + 𝑗 𝐡 𝛽𝛾 𝑑 𝛽 𝑑 𝛾 𝜐 0 𝛽 𝛽≠𝛾 𝜐 1 = 𝑑 𝛽 2 𝐡 𝛽𝛽 𝐡 = lim 𝜐 πœ”(𝑒) 𝐡 πœ”(𝑒) 𝑒𝑒 πœβ†’βˆž 0 𝛽  If πœ”(𝑒) 𝐡 πœ”(𝑒) relaxes to some limit at long times, the long time limit must coincide with 𝐡 . This corresponds to the so-called diagonal ensemble : 𝜍 diag 𝑑 𝛽 = 𝑑 𝛽 2 𝛽 𝛽 𝛽 38

  28. ETH, entanglement entropy & thermal entropy (2)  Assumption: the observable 𝐡 β€œthermalizes” , which means that πœ”(𝑒) 𝐡 πœ”(𝑒) converges to the prediction of some thermodynamical ensemble (hence independent of the details of the initial state, except for the energy 𝐹 0 ) , here the micro-canonical one: 1 Ξ© 𝑑 𝛽 2 𝐡 𝛽𝛽 = Tr 𝜍 diag 𝑑 𝛽 𝐡 = Tr 𝜍 micro 𝐹 𝐡 = 𝐡 𝛽𝛽 π’ͺ(𝐹, Ξ”E) 𝛽 Ξ© 𝛽 𝐹 𝛽 βˆ’πΉ <Δ𝐹 1 𝛽 𝛽 𝜍 micro 𝐹 = π’ͺ(𝐹, Ξ”E) 𝛽 𝐹 𝛽 βˆ’πΉ <Δ𝐹  Remark: 𝜍 diag 𝑑 𝛽 depends on the initial conditions, but 𝜍 micro 𝐹 does not…How can that be ?  A possible/plausible explanation: β€œ Eigenstate thermalization Hypothesis (ETH)” : the diagonal matrix elements 𝐡 𝛽𝛽 are (in thermodynamic limit) smooth functions of the energy β€’ density, and independent of the choice of the eigenstate (in a sufficiently narrow energy window) . Hence 𝐡 = 𝐡 micro 𝐹 . Off diagonal elements 𝐡 𝛽𝛾 ( 𝛽 β‰  𝛾 ) vanish (in the thermodynamic limit) β€’  References on ETH: [1] J. M. Deutsch β€œ Quantum statistical mechanics in a closed system ”, Phys. Rev. A 43, 2046 (1991) [2] M. Srednicki β€œ Chaos and quantum thermalization ”, Phys. Rev. E 50, 888 (1994) [3] M. Rigol, V. Dunjko, Vanja & M. Olshanii "Thermalization and its mechanism for generic isolated quantum systems ” , Nature 452 854 (2008) 39

  29. ETH, entanglement entropy & thermal entropy (3) J. R. Garrison & T. Grover arXiv:1503.00729 1 β‰ͺ vol Ξ© β‰ͺ vol Ξ©  Strong form of ETH: all the observables in Ξ© satisfy the ETH Ξ© Consequences: the RDM computed in some arbitrary eigenstate 𝛽 β€’ Ξ© at energy 𝐹 𝛽 ~𝐹 becomes β€œthermal” in the thermodynamic limit: 𝜍 Ξ© 𝛽 = Tr Ξ© 𝛽 𝛽 ~Tr Ξ© 𝜍 𝑛𝑗𝑑𝑠𝑝 𝐹 (with 𝐹 𝛽 ~𝐹 ) β€’ the Von Neumann/entanglement entropy of an excited eigenstate is (asymptotically) the thermodynamic entropy of the subsystem β€’ The volume law for the thermodynamic entropy at π‘ˆ > 0 implies a volume law for the Von Neumann entropy of high-energy eigenstates.  Assume further that the thermodynamic free energy density 𝑔(𝛾) can equivalently be obtained exp βˆ’π›ΎπΌ Ξ© Ξ© from 𝜍 𝑛𝑗𝑑𝑠𝑝 𝐹 = Tr Ξ© 𝜍 𝑛𝑗𝑑𝑠𝑝 𝐹 or 𝜍 cano ~ (adjust the inverse temperature 𝛾 to match the energy E) . π‘Ž(𝛾) which describe thes region Ξ© , isolated , and at thermal equilibrium. Then : vol Ξ© 𝑔 π‘œπ›Ύ = βˆ’ 1 π‘œπ›Ύ log Tr exp βˆ’π›ΎπΌ Ξ© π‘œ ~ βˆ’ 1 π‘œ π‘œπ›Ύ log Tr π‘Ž 𝛾 π‘œ 𝜍 𝑛𝑗𝑑𝑠𝑝 Ξ© 𝐹 ~ βˆ’ 1 𝛾 log π‘Ž 𝛾 βˆ’ 1 π‘œπ›Ύ log Tr 𝜍 Ξ© 𝛽 π‘œ = βˆ’ 1 𝛾 log π‘Ž 𝛾 βˆ’ 1 βˆ’ π‘œ π‘œ 𝛽 π‘œπ›Ύ 𝑇 RΓ©nyi π‘œβˆ’1 π‘œ 𝛽 The RΓ©nyi entanglement entropies of a single eigenstate Finally: 𝑔 π‘œπ›Ύ βˆ’ 𝑔 𝛾 = π‘œπ›Ύvol Ξ© 𝑇 RΓ©nyi gives the thermodynamic free energy at all temperatures ! 40

  30. FREE PARTICLES Computing & diagonalizing reduced density matrices in free fermion/boson problems 41

  31. Free particles & Peschel’s trick (1) I Peschel and M.-C. Chung, J. Phys. A: Math. Gen. 32 8419 (1999) I. Peschel, J. Phys. A: Math. Gen. 36 L205 (2003)  Free fermions or free bosons on a lattice † 𝑑 † 𝑑 † Most general (lattice) quadratic Hamiltonian: 𝐼 0 = 𝐡 𝑗,π‘˜ 𝑑 𝑗 + B 𝑗,π‘˜ 𝑑 𝑗 + 𝐼. 𝑑. 𝑗,π‘˜ π‘˜ 𝑗,π‘˜ π‘˜ 𝐼 0 can be diagonalized using a Bogoliubov transformation (see next slides), and the π‘ˆ = 0 (as well as T>0 ) correlations can be calculated easily. † 𝑑  𝑑 𝑗 π‘˜ β†’ Wick theorem β†’ any correlator † 𝑑 𝐷 π‘—π‘˜ = 𝑑 𝑗 π‘˜ 𝑗,π‘˜βˆˆπ΅ β†’ any observable in region 𝐡 β†’ 𝜍 𝐡 The reduced density 𝜍 𝐡 is completely determined by two-point functions in the region of interest  Correlators in region 𝐡 obeys Wick’s theorem β†’ 𝜍 𝐡 is Gaussian β†’ βˆƒ quadratic Β« Hamiltonian Β» 𝐼 such that 𝜍 𝐡 = 1 π‘Ž exp βˆ’πΌ † 𝑑 † 𝑑 † with 𝐼 = β„Ž 𝑗,π‘˜ 𝑑 𝑗 + Ξ” 𝑗,π‘˜ 𝑑 𝑗 + H. c. 𝑗,π‘˜ π‘˜ 𝑗,π‘˜ π‘˜ Remark: 𝐼 depends on the subsystem 𝐡 (should be noted 𝐼 𝐡 …), it is not the physical Hamiltonian 𝐼 0 . β†’ The entanglement entropy 𝑇 𝐡 = βˆ’Tr 𝜍 𝐡 log 𝜍 𝐡 is the thermodynamic entropy of 𝐼 at (fictitious) temperature 1. 42

  32. Free particles & Peschel’s trick (2)  Correlation matrix † 𝑑 † 𝑑 † 𝑑 𝑗 𝑑 𝑗 π‘˜ π‘˜ 𝑑 † 𝐡 𝐸 † , 𝐡 π‘—π‘˜ = 𝑑 𝑗 † 𝑑 † 𝑑 𝑑 † dim. 2𝑂 Γ— 2𝑂, 𝐷 = 𝐷 = = 1 Β± 𝐡 𝑒 , 𝐸 π‘—π‘˜ = 𝑑 𝑗 𝑑 π‘˜ 𝐸 † π‘˜ 𝑑 † 𝑑 𝑗 𝑑 𝑑 𝑗 𝑑 π‘˜ π‘˜  We look for new creation/annihilation operators 𝑏 , 𝑏 † (=Bogoliubov transformation): 𝑏 † = 𝑉 𝑑 † 𝑑 with 𝑉 βˆ“1 1 𝑉 † = βˆ“1 0 0 1 = Ξ£ Upper sign for boson, lower sign for fermions 0 0 𝑏 Such that the correlations of the new β€œparticles” are diagonal : † 𝑏 𝑙′ † 𝑏 𝑙′ † 𝑏 𝑙 𝑏 𝑙 πœ‡ 𝑙 πœ€ 𝑙,𝑙′ 0 = Ξ› = 𝑉𝐷𝑉 † † 0 1 Β± πœ‡ 𝑙 πœ€ 𝑙,𝑙′ 𝑏 𝑙 𝑏 𝑙′ 𝑏 𝑙 𝑏 𝑙′ So, the linear algebra problem we have to solve is 𝑉𝐷𝑉 † = Ξ› 𝑉Σ𝑉 † = Ξ£ † 𝑑 † 𝑑 † βˆ“ 𝑑 𝑗 𝑑 𝑗 π‘˜ π‘˜  One method is to diagonalize the matrix 𝐷Σ = . Indeed, combining the † βˆ“ 𝑑 π‘˜ 𝑑 𝑑 𝑗 𝑑 π‘˜ π‘˜ equations above we get 𝑉𝐷Σ𝑉 βˆ’1 = ΛΣ . By construction, the correlations of the new particles † 𝑏 𝑙′ = πœ€ 𝑙,𝑙′ πœ‡ 𝑙 and 𝑏 𝑙 𝑏 𝑙′ = 𝑏 𝑙 † 𝑏 𝑙′ † are very simple: 𝑏 𝑙 = 0 . We have found some independent β€œcorrelation modes”. 43

  33. Free particles & Peschel’s trick (3) † 𝑑 † 𝑑 † 𝑑 𝑗 𝑑 𝑗 π‘˜ π‘˜ 𝐡 𝐸  𝐷 = = 1 Β± 𝐡 𝑒 𝐸 † † 𝑑 π‘˜ 𝑑 𝑑 𝑗 𝑑 π‘˜ π‘˜  Exercise: When 𝐡 and 𝐸 are real, show that the following (smaller: 𝑂 Γ— 𝑂 ) diagonalization gives the eigenvalues Ξ» : 2 Eigenvalues of 𝐡 Β± 1 𝐡 Β± 1 πœ‡ 𝑙 Β± 1 2 + 𝐸 2 βˆ’ 𝐸 = 2 cf. Lieb, Schultz & Mattis, Ann. Phys., NY 16 407 (1961) 44

  34. Free particles & Peschel’s trick (4) † 𝑏 𝑙′ = πœ€ 𝑙,𝑙′ πœ‡ 𝑙 & 𝑏 𝑙 𝑏 𝑙′ = 𝑏 𝑙 † 𝑏 𝑙′ † Recall: 𝑏 𝑙 = 0  Question: what is the (quadratic) β€œHamiltonian” 𝐼 such that the correlations above can be 1 π‘Ž Tr β‹― 𝑓 βˆ’πΌ ? obtained through some β€œthermal” average: β‹― =  Answer: Since the modes are uncorrelated, 𝐼 must be diagonal in terms of the 𝑏 and 𝑏 † and take † 𝑏 𝑙 † 𝑏 𝑙 = πœ‡ 𝑙 : the form 𝐼 = πœ— 𝑙 𝑏 𝑙 . One then has to adjust the Β« pseudo energies Β» πœ— 𝑙 so that 𝑏 𝑙 𝑙 1 bosons ⟹ πœ— 𝑙 = log 1 Β± πœ‡ 𝑙 𝑓 πœ— 𝑙 βˆ’ 1 † 𝑏 𝑙 = πœ‡ 𝑙 = 𝑏 𝑙 1 πœ‡ 𝑙 fermions 𝑓 πœ— 𝑙 + 1  Which finally gives the RDM: 𝜍 𝐡 ~ exp βˆ’ log 1 Β± πœ‡ 𝑙 † 𝑏 𝑙 𝑏 𝑙 πœ‡ 𝑙 𝑙  And the (entanglement) entropy is given by the sum of the contributions of each mode: πœ— βˆ’ log 1 βˆ’ 𝑓 βˆ’πœ— + bosons 𝑓 πœ— βˆ’ 1 πœ— 𝑇 = 𝑇 πœ— 𝑙 with 𝑇(πœ—) = + log 1 + 𝑓 βˆ’πœ— + 𝑓 πœ— + 1 fermions 𝑙 = βˆ’πœ‡ log πœ‡ βˆ’ 1 βˆ’ πœ‡ log 1 βˆ’ πœ‡  Remark: For fermions, the eigenvalues πœ‡ = 0 or 1 do not contribute to the entropy ( 𝜁 = ±∞ ). For bosons, πœ‡ = 0 do not contribute. 45

  35. Entanglement entropy after a local β€œquench” Example of an application of Peschel’s trick to compute the entanglement in a time-dependent situation Initial (product) state πœ” 0 = 𝑏 ⨂ 𝑐 L=200 sites (100+100) A B † 𝑑 𝑗+1 + β„Ž. 𝑑. ) H A and H B : free fermions ( = 𝑑 𝑗 𝑗 𝑏 = g.s. of H A 𝑐 = g.s. of H B Unitary evolution to 𝑒 > 0 : πœ”(𝑒) = exp βˆ’π‘—π‘’πΌ πœ” 0 𝐼 = 𝐼 𝐡 + 𝐼 𝐢 + 𝐼 π‘—π‘œπ‘’ 𝐼 π‘—π‘œπ‘’ : hopping between the A & B B πœ” 𝑒 πœ” 𝑒 remains β€œGaussian” 𝜍 𝐡 𝑒 = π‘ˆπ‘  𝑇 𝐡 (𝑒) = βˆ’Tr 𝐢 𝜍 𝐡 𝑒 log 𝜍 𝐡 𝑒 can be computed with Peschel’s trick, using the (time- dependent) 2-point correlations. Remark: we observe a logarithmic growth of 𝑇 𝐡 (𝑒) (holds as long as t ≲ 𝑀/2 ) 46

  36. Free fermions on a chain – correlation matrix  Ground-state on a periodic chain 𝐼 = βˆ’ 1 † 𝑑 π‘œ+1 + 𝑑 π‘œ+1 † † 𝑑 𝑙 2 𝑑 π‘œ 𝑑 π‘œ = βˆ’ cos 𝑙 𝑑 𝑙 π‘œ 𝑙 † vacuum πœ” = 𝑑 𝑙 πœ— 𝑙 = βˆ’ cos 𝑙 βˆ’π‘™ 𝐺 ≀𝑙≀𝑙 𝐺 π‘€βˆ’1 † = 1 † 𝑓 βˆ’π‘—π‘™π‘› 𝑑 𝑛 𝑙 𝑑 𝑙 𝑀 βˆ’πœŒ 𝜌 π‘œ=0  Two- point correlations β†’ matrix 𝐡 π‘œ,𝑛 = 1 † 𝑑 𝑛 πœ” = † 0 0 𝑑 𝑛 𝑑 𝑙 † 0 𝑓 𝑗𝑙(π‘œβˆ’π‘›) πœ” 𝑑 π‘œ 0 𝑑 𝑙 𝑑 π‘œ 𝑀 βˆ’π‘™ 𝐺 ≀𝑙≀𝑙 𝐺 βˆ’π‘™ 𝐺 ≀𝑙≀𝑙 𝐺 𝑙 𝐺 2𝜌 𝑓 𝑗𝑙(π‘œβˆ’π‘›) = sin 𝑙 𝐺 (π‘œ βˆ’ 𝑛) 𝑒𝑙 π‘€β†’βˆž πœ” 𝑑 π‘œβ€  𝑑 𝑛 πœ” = 𝐡 π‘œ,𝑛 = lim 𝜌(π‘œ βˆ’ 𝑛) βˆ’π‘™ 𝐺 47

  37. Free fermions on a chain – determinant Jin & Korepin, J. Stat Phys. 116 , 79 (2004)  Recall: 2𝜌 𝑓 𝑗𝑙(π‘œβˆ’π‘›) = sin 𝑙 𝐺 (π‘œβˆ’π‘›) 𝑙 𝐺 𝑒𝑙 † 𝑑 𝑛 πœ” = π‘€β†’βˆž πœ” 𝑑 π‘œ Correlation matrix: 𝐡 π‘œ,𝑛 = lim βˆ’π‘™ 𝐺 𝜌(π‘œβˆ’π‘›) Entanglement entropy: 𝑇 = 𝑇 πœ‡ 𝑙 = sum over the eigenvalues of 𝐡 𝑙 and 𝑇 πœ‡ = βˆ’πœ‡ log πœ‡ βˆ’ 1 βˆ’ πœ‡ log 1 βˆ’ πœ‡  Equivalent formulation in terms of a contour integral , with poles at each eigenvalue: det πœ‡π• βˆ’ 𝐡 = πœ‡ βˆ’ πœ‡ 𝑙 𝑙 Im( Ξ» ) log det πœ‡π• βˆ’ 𝐡 = log πœ‡ βˆ’ πœ‡ 𝑙 0 1 𝑙 𝑒 log det πœ‡π• βˆ’ 𝐡 1 = Re( Ξ» ) π‘’πœ‡ πœ‡ βˆ’ πœ‡ 𝑙 𝑙 = π‘’πœ‡ 2π‘—πœŒ 𝑇 πœ‡ 𝑒 log det πœ‡π• βˆ’ 𝐡 𝑇 = 𝑇 πœ‡ 𝑙 π‘’πœ‡ 𝑙 48

  38. Fisher-Hartwig conjecture Asymptotic behavior of the det. of Toeplitz matrices with singular symbol (simplified version …) 2𝜌 π‘’πœ„ 2𝜌 𝜚 πœ„ 𝑓 βˆ’π‘—π‘™πœ„  𝐡 𝑛,π‘œ = 𝐡 𝑛 βˆ’ π‘œ parametrized as Fourier coefficients: A 𝑙 = 0 𝜚 is the called the symbol of the Toeplitz matrix 𝐡 . Remark: in our (free fermion) case, the symbol 𝜚 of the correlation matrix 𝐡 has two discontinuities (details in a few slides…)  Parametrize de symbol’s discontinuities with some numbers (complex) 𝛾 𝑠 and (real) πœ„ 𝑠 : 𝑆 exp βˆ’π‘—π›Ύ 𝑠 βˆ— arg 𝑓 𝑗 πœŒβˆ’ πœ„+πœ„ 𝑠 𝜚 πœ„ = πœ” πœ„ with arg ∈] βˆ’ 𝜌, 𝜌] 𝑠=1 πœ” πœ„ : smooth, and no winding β†’ pointwise singularity at each πœ„ 𝑠 : 𝜚 πœ„ = πœ„ 𝑠 + πœ— 𝜚 πœ„ = πœ„ 𝑠 βˆ’ πœ— = exp (βˆ’π‘—π›Ύ 𝑠 βˆ— (𝜌 + πœ—)) (βˆ’π‘—π›Ύ 𝑠 βˆ— (βˆ’πœŒ + πœ—)) β†’ exp βˆ’2𝑗𝛾 𝑠 exp βˆ’2𝑗𝛾 𝑠 = log 𝜚 πœ„ 𝑠 + πœ— 𝜚 πœ„ 𝑠 βˆ’ πœ—  The Fisher- Hartwig’s conjecture describes the symptotic behavior of the det 𝐡 : 𝑆 2𝜌 π‘’πœ„ + βˆ’log 𝑀 𝛾 𝑠 2 log det 𝐡 = 𝑀 2𝜌 log 𝜚 πœ„ + β‹― 0 𝑠=1 49

  39. Fisher-Hartwig conjecture & 1d Fermi sea (1) 𝑙 𝐺 𝑒𝑙 sin 𝑙 𝐺 (π‘œβˆ’π‘›) 2𝜌 𝑒𝑙 2𝜌 𝑓 𝑗𝑙(π‘œβˆ’π‘›) 2𝜌 𝜚 πœ„ 𝑓 𝑗𝑙(π‘œβˆ’π‘›)  Recall: 𝐡 π‘œ,𝑛 = = = βˆ’π‘™ 𝐺 0 𝜌(π‘œβˆ’π‘›) β†’ Symbol for πœ‡π• βˆ’ 𝐡 : 𝜚 πœ„ = πœ‡ βˆ’ 1 if πœ„ ∈ βˆ’π‘™ 𝐺 , 𝑙 𝐺 πœ‡ otherwise β†’ 2 discontinuities in πœ„ = βˆ’π‘™ 𝐺 and πœ„ = +𝑙 𝐺 : 𝛾 1 = 1 2π‘—πœŒ log πœ‡ βˆ’ 1 πœ‡ 𝛾 2 = 1 πœ‡ 2π‘—πœŒ log = βˆ’π›Ύ 1 πœ‡ βˆ’ 1  Use Fisher-Hartwig: = 1 2𝜌 2𝑙 𝐺 log πœ‡ βˆ’ 1 + 2(𝜌 βˆ’ 𝑙 𝐺 ) 𝑀 βˆ’ 2 𝛾 1 2 log 𝑀 + β‹― log det πœ‡ βˆ’ 𝐡 𝑒log det πœ‡ βˆ’ 𝐡 = 1 πœ‡ βˆ’ 1 + 2(𝜌 βˆ’ 𝑙 𝐺 ) 2𝑙 𝐺 𝑒𝛾 1 𝑀 βˆ’ 4𝛾 1 π‘’πœ‡ log 𝑀 + β‹― π‘’πœ‡ 2𝜌 πœ‡ 𝑒𝛾 1 1 π‘’πœ‡ = 2π‘—πœŒ πœ‡ πœ‡ βˆ’ 1 1 𝑒log det πœ‡ βˆ’ 𝐡 1 2𝑙 𝐺 2(𝜌 βˆ’ 𝑙 𝐺 ) 1 πœ‡ βˆ’ 1 1 = = πœ‡ βˆ’ 1 + 𝑀 βˆ’ 4 2π‘—πœŒ 2 log πœ‡ πœ‡ βˆ’ 1 log 𝑀 + β‹― πœ‡ βˆ’ πœ‡ 𝑙 π‘’πœ‡ 2𝜌 πœ‡ πœ‡ 𝑙 Remark: 2 poles in πœ‡ = 0 and πœ‡ = 1 with extensive residues (~ 𝑀 ) Physical meaning: an extensive number of single- particle β€œstates” of the segment are either completely filled ( πœ‡ 𝑙 = † 𝑏 𝑙 =1) or completely empty ( πœ‡ 𝑙 = 𝑏 𝑙 † 𝑏 𝑙 =0 ) and do not contribute to the entanglement. 𝑏 𝑙 50

  40. Fisher-Hartwig conjecture & 1d Fermi sea (2) 𝑒log det πœ‡ βˆ’ 𝐡 = 1 πœ‡ βˆ’ 1 + 2(𝜌 βˆ’ 𝑙 𝐺 ) 2𝑙 𝐺 2π‘—πœŒ 2 log πœ‡ βˆ’ 1 1 1 𝑀 βˆ’ 4 πœ‡ πœ‡ βˆ’ 1 log 𝑀 + β‹― π‘’πœ‡ 2𝜌 πœ‡ πœ‡ 𝑇 = π‘’πœ‡ (1 βˆ’ πœ‡) 𝑒log det πœ‡ βˆ’ 𝐡 2π‘—πœŒ βˆ’πœ‡ log πœ‡ βˆ’ 1 βˆ’ πœ‡ log π‘’πœ‡ Im( Ξ» )  The only contribution to this contour integral is the 0 1 discontinuity of log πœ‡ βˆ’ 1 on the real axis: log πœ‡ βˆ’ 1 + 𝑗0 βˆ’ βˆ’ log πœ‡ βˆ’ 1 + 𝑗0 + = βˆ’2π‘—πœŒ Re( Ξ» ) 1 𝑇 = 0 Γ— 𝑀 βˆ’ 4 βˆ’2π‘—πœŒ 2π‘—πœŒ 3 log 𝑀 π‘’πœ‡ βˆ’πœ‡ log πœ‡ βˆ’ 1 βˆ’ πœ‡ log 1 βˆ’ πœ‡ πœ‡ πœ‡ βˆ’ 1 0 = βˆ’ 𝜌 2 𝑇 = + 1 3 3 log 𝑀 + β‹― NB: the poles in 0 and 1 do not contribute since the residue vanishes β†’ no 𝒫(𝑀) (β€œvolume”) term Origin of the log (𝑀) term: discontinuity of the symbol ← discontinuity of the fermion occupation number in Fourier space ← algebraic decay of the correlations 51

  41. Entanglement in a free fermion chain & S~log(L)/3 Total length: L subsystem A x Same data (red dots), compared with the log of the β€œchord” distance ( green curve) : 𝑒 𝑦 = 2𝑀 sin πœŒπ‘¦ 𝑀 𝑒 𝑦 52

  42. Summary of lecture #2  Mutual information 𝐽 𝐡: 𝐢 = 𝑇 𝜍 A + 𝑇 𝜍 𝐢 βˆ’ 𝑇 𝜍 AB . Encodes all the correlations (quantum or classical) between the regions 𝐡 and 𝐢 .  Using 𝐽 𝐡: 𝐢 one can define an β€œall - correlations” length 𝝄 . If it is finite, the system obeys an area law for the entanglement entropy (argument by Wolf et al , PRL 2008)  Random pure states have a large entanglement entropy (volume law, and close to the maximal possible value log dim β„‹ ) 𝐡  Relations between thermodynamics, the eigenstate thermalization hypothesis (ETH) and the A A ( 𝛽 ) entanglement in highly excited pure states: 𝑇 thermo (E) = S VonNeumann  Free particle systems (fermions or bosons): Reduced density matrices are Gaussian and fully determined by the 2- point correlation functions (Wick’s theorem). The Von Neumann entropy is a simple function of the eigenvalues of the correlation matrix.  Application to the calculation of the entropy of a segment in a free Fermion chains (Jin & Korepin 2004): A Map S VonNeumann β€’ to a contour integral of a determinant. Toepliz matrix with a discontinous β€œsymbol” (↔ discontinuity of the fermion occupation number at the Fermi points) β€’ Fisher-Hartwig β†’ asymptotics of the determinant has a log(L) term. 1 𝑇(𝑀) = 3 log (𝑀) . Universal coefficient (only depends on the number of Fermi points, not on β€’ the details of the dispersion relation nor the density). 53

  43. Entanglement in free fermion chain: gap versus gapless Total length: 𝑀 ≫ 𝑦 Dimerized free-fermion chain (2-site unit cell) : † 𝑑 2π‘œ+1 + 𝑑 2π‘œ+1 † † † H = βˆ’π’– 𝑑 2π‘œ 𝑑 2π‘œ βˆ’ 𝒖′ 𝑑 2π‘œ+1 𝑑 2π‘œ+2 + 𝑑 2π‘œ+2 𝑑 2π‘œ+1 subsystem A π‘œ π‘œ 𝒖 𝒖′ 𝑦 2π‘œ 2π‘œ + 1 Band structure 𝑇 𝐡 is qualitatively different in the gapped 𝐹 𝑙 ∼ 1 and gapless cases 3 log 𝑦 βˆ’ 𝜌 + 𝜌 2 2 Ξ” 𝑻 𝑩 (π’š) ∼ constant 𝑙 𝑒 βˆ’ 𝑒 β€² 2 + 4𝑒𝑒 β€² cos 𝑙 2 𝐹 𝑙 = Β± gap Ξ” = 2 𝑒 βˆ’ 𝑒′ when the chemical potential is at 𝐹 = 0 β†’ band insulator at half -filling if 𝑒 β‰  𝑒′ π’š 54

  44. Log(L) term in presence of a Fermi surface in 𝑒 β‰₯ 2 β€œ Violation of the Entropic Area Law for Fermions ” M. M. Wolf, Phys. Rev. Lett. 96, 010404 (2006) β€œ Entanglement Entropy of Fermions in Any Dimension and the Widom Conjecture ” D. Gioev &I. Klich, Phys. Rev. Lett. 96, 100503 (2006) 55

  45. Boundary law violation in presence of a Fermi surface Simple geometric argument : β€œEntanglement Entropy and the Fermi Surface” B. Swingle, Phys. Rev. Lett. 105, 050502 (2010) Real space 1 st Brillouin zone π‘œ 𝑙 subsystem A  Free-fermion tight-binding model π‘’π‘š 𝑒𝑙 † 𝑑 † 𝑑 𝑙 𝐼 = 𝑒 π‘—π‘˜ 𝑑 𝑗 π‘˜ + h. c. = πœ— 𝑙 𝑑 𝑙 Fermi sea π‘™βˆˆ1 st BZ 𝑗,π‘˜ π‘œ π‘Œ  Contribution of the modes 𝑒𝑙 and boundary element π‘’π‘š to the entanglement entropy 𝑇 𝐡 ? β†’ Idea: model this contribution by decoupled chains π‘œ 𝑙 running parallel to the π‘œ 𝑙 direction π‘’π‘š (insures the same propagation direction for the low-energy modes): Lattice spacing 𝑏 56

  46. Boundary law violation in presence of a Fermi surface π‘œ 𝑙 Real space 1 st Brillouin zone π‘œ 𝑙 subsystem A π‘’π‘š 𝑒𝑙 Fermi sea Lattice π‘œ π‘Œ spacing 𝑏 π‘’π‘š β€’ Number of chains crossing the boundary: 𝑒𝑂 = π‘’π‘š 𝑏 π‘œ 𝑙 . π‘œ π‘Œ β€’ Entropy contribution of each chain: decoup. chains = 1 𝑒𝑇 𝐡 6 log 𝑀 Γ— 𝑒𝑂 β€’ Correct by the length of the element along the Fermi surface (relative to that of the decoup. Chain model) 𝑒𝑙 = 1 12 log 𝑀 Γ— π‘’π‘š 𝑏 π‘œ 𝑙 . π‘œ π‘Œ Γ— 𝑏𝑒𝑙 decoup. chains Γ— 𝑒𝑇 𝐡 = 𝑒𝑇 𝐡 2𝜌 2 Γ— 2𝜌 𝑇 𝐡 = 1 12 log 𝑀 π‘’π‘š 𝑒𝑙 2𝜌 π‘œ 𝑙 . π‘œ π‘Œ 𝑏 Integrating on the real space boundary and Fermi surface: Turns out to be exact ! (and related to Windom’s conjecture) ~ 𝒫 𝑀 log 𝑀 57

  47. Boundary law violation in presence of a Fermi surface β€œ Entanglement scaling in critical two-dimensional fermionic and bosonic systems ”, T . Barthel, M.-C. Chung, & U. SchollwΓΆck Phys. Rev. A 74, 022329 (2006) The prefactor c ( ΞΌ ) in the entanglement entropy scaling law as a function of the chemical potential ΞΌ for the ground- state of the two-dimensional fermionic tight-binding model in comparison to the result of Gioev and Klich. Insets show the hopping parameters and the Fermi surfaces for ΞΌ =βˆ’3,βˆ’2,βˆ’1,0 . [From Barthel et al. 2006 ] 58

  48. Critical systems in 1d & CFT … the celebrated S~ 𝑑 3 log 𝑀 formula 59

  49. Entanglement & CFT Nucl. Phys B424 (1994) S~ 𝑑 3 log 𝑀 J. Stat. Mech 2004 +Review: Calabrese & Cardy, J. Phys. A 42, 504005 (2009) 60

  50. Numerics & entanglement in critical spin chains β€œ Entanglement in Quantum Critical Phenomena ” G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev. Lett. 90, (2003) Critical XX chain 𝑇~ 1 3 log 𝑀 , 𝑑 = 1 c=1 (XX) S A c=1/2 (ICTF) 1 1 Critical Ising chain 𝑇~ 6 log 𝑀 , 𝑑 = 2 Gapped (ICTF) Non-critical Ising chain 𝑇~𝑑𝑑𝑒. L 61

  51. Quantum system in d=1 & partition functions in d=2 Functional/path integral ↔ imaginary time evolution π‘Ž exp βˆ’π›ΎπΌ , with π‘Ž = Tr 𝑓 βˆ’π›ΎπΌ 𝑏  Thermal density matrix 𝜍 = 1 Imaginary time 𝛾 𝑏 𝜍 𝑐 = 1 π‘Ž Γ— cylinder β€œpartition function” with boundary conditions 𝑏 and 𝑐 π‘Ž : torus partition function 𝑑 𝑐 L 𝛾 β†’ ∞ ~ 𝑑 πœ”  Ground-state wave function given by infinitely long cylinder partition functions : π›Ύβ†’βˆž exp βˆ’π›ΎπΌ = 𝑓 βˆ’π›ΎπΉ 0 πœ” πœ” lim πœ” ~ lim (βˆ’π›ΎπΌ) 0 π›Ύβ†’βˆž exp Any state with some overlap 0 with the ground-state 62

  52. Critical system in d=1 & CFT  Critical 1d system: β€’ gapless in the thermodynamic limit β€’ (some) correlation functions decay algebraically with distance  Examples 𝑨 𝑨 𝑇 π‘œ+1 𝑦 Critical Ising chain in transverse field 𝐼 = βˆ’ 𝜏 π‘œ βˆ’ h 𝑇 π‘œ with β„Ž = 1 β€’ π‘œ π‘œ 1 𝑧 𝑇 π‘œ+1 𝑧 𝑦 𝑨 𝑦 𝑇 π‘œ+1 𝑨 𝑇 π‘œ+1 2 XXZ spin chain 𝐼 = 𝑇 π‘œ + 𝑇 π‘œ + Ξ” 𝑇 π‘œ with Ξ” ∈] βˆ’ 1,1] β€’ Spin- π‘œ π‘œ † 𝑑 ↑,π‘œ+1 + 𝑑 ↓,π‘œ † 𝑑 ↓,π‘œ+1 + H. c. 1d Hubbard model 𝐼 = βˆ’π‘’ 𝑑 ↑,π‘œ β€’ π‘œ Luttinger liquids † 𝑑 ↑,π‘œ + 𝑑 ↓,π‘œ † 𝑑 ↓,π‘œ + H. c. +𝑉 𝑑 ↑,π‘œ π‘œ β€’ Edge of a quantum 2d Hall system β€’ …  Continuum limit and CFT 𝑏 The universal / long-distance properties of the system are obtained 1 by replacing the microscopic density matrix 𝜍 = π‘Ž exp βˆ’π›ΎπΌ by the corresponding cylinder CFT partition function 𝛾 𝑏 exp βˆ’π›ΎπΌ 𝑐 β‰ˆ (with the appropriate boundary conditions, corresponding to β€œcoarse grained” versions of the states 𝑏 and 𝑐 ) 𝑐 63 L

  53. Reduced density matrix & 2d partition functions 𝜍 𝐡 = Tr 𝐢 𝜍 𝑏 𝜍 𝐡 𝑏′ = 𝑏𝑐 𝜍 𝑏 β€² 𝑐 𝑐 𝑐 𝑏 𝛾 A B A B 𝑏 periodic 𝑏 𝜍 𝐡 𝑏′ = 1 𝑏𝑐 𝜍 𝑏 β€² 𝑐 = 1 𝑐 π‘Ž π‘Ž 𝑏′ 𝑏′ 𝑐 L Tracing out the region B 𝜍 𝐡 = 1 A π‘Ž 64

  54. RΓ©nyi entropy & partition functions  Reduced density matrix to the power n 𝜍 𝐡 = 1 A π‘Ž : cylinder partition function π‘Ž n 1 2 … 1 Tr 𝜍 π΅π‘œ = nB nA π‘Ž π‘œ 2A 2B 1A 1B  Some remarks: β€’ The slits of the n cylinders are β€œglued” cyclically to obtain the trace β†’ Riemann surface with n sheets. β€’ Consider a path encircling one end of the segment A β†’ moves to the next cylinder. n turns are needed to get back to the origin. 65

  55. Entanglement & CFT (2) Holzhey, Larsen & Wilcek, Nucl. Phys B 424 (1994) 𝛾 β†’ ∞ π‘₯ = βˆ’ sin 𝜌 πœ‚ βˆ’ 𝑦 𝑀 Im(π‘₯) πœ‚ ∈ halfβˆ’infinite Re(π‘₯) sin 𝜌 πœ‚ 𝑀 cylinder βˆ’π‘¦ πœ— 1 𝑏𝑐 πœ” ~ 𝑦 πœ— 1 πœ— 2 𝑦 L half-plane πœ— 2 πœ— 1 A B 𝑦 𝑀 βˆ’ 𝑦 πœ— 1 & πœ— 2 : UV cut-off (~lattice spacing) Assume 𝑀 ≫ 𝑦 for simplicity Remarks: β€’ Without the cut-offs, there would be infinitely many degrees of freedom close to the boundary between A and B, and their contribution to the entanglement entropy would diverge. β€’ The actual conformal mapping which maps the cylinder without the excluded regions to the Β½ annulus (right picture) is complicated, but it’s precise form is not needed in what follows. 66

  56. Entanglement & CFT (3) – mapping to a conical singularity Holzhey, Larsen & Wilcek, Nucl. Phys B424 (1994) 𝑐 𝑏 βˆ’π‘¦ πœ— 1 𝑦 πœ— 1 𝑏′ πœ— 2 𝑦 𝑏 βˆ’π‘¦ πœ— 1 𝑦 πœ— 1 Wave function πœ— 2 𝑦 𝑏𝑐 πœ” ~ Density matrix 𝑏 𝜍 𝐡 𝑏′ ~ π‘Ž cone angle 2π‘œ 𝜌 Conical singularity π‘œ=1βˆ’π›½ = Tr 𝜍 𝐡 πœ— 𝑦 β†’ 0) , with angle π‘Ž disk π‘œ ( π‘œ ∼ deficit 2𝛽 𝜌 . = 𝑑 1 π‘œ βˆ’ π‘œ log 𝑦 𝜍 𝐡 π‘œ log Tr 𝜍 𝐡 πœ— 6 (n levels) (this can be calculated by mapping the disk to the cone using 𝑨 β†’ w z = z n , and compute the associated Shwarzian derivative – see next slide) 67

  57. Entanglement & CFT (4) – Free energy of a cone π‘₯ disk cone 𝑨 2 𝑆/𝑠 = 𝑦 𝑆 = 𝑦/πœ— πœ— 𝑠 = πœ—/𝑦 Mapping from the disk to the cone: 𝑨 β†’ π‘₯ 𝑨 = 𝑨 π‘œ π‘₯ β€² = π‘œπ‘¨ π‘œβˆ’1 π‘₯ β€²β€² = π‘œ π‘œ βˆ’ 1 𝑨 π‘œβˆ’2 Stress energy tensor (holomorphic part) in the disk geometry: π‘ˆ 𝑒 (𝑨) . Stress In the cone geometry: π‘ˆ 𝑑 (π‘₯) They are related to each other through a standard CFT transformation law, which involves the Scharzian derivative: 2 π‘₯ β€²β€²β€² π‘₯ β€²β€² π‘₯β€² 2 π‘ˆ 𝑒 𝑨 βˆ’ 𝑑 1 π‘₯β€² βˆ’ 3 π‘ˆ 𝑑 π‘₯ = 12 2 π‘₯ β€² π‘ˆ 𝑒 (𝑨) 𝑑 1 Here we find π‘ˆ 𝑑 π‘₯ = π‘₯β€² 2 + 24π‘₯ 2 1 βˆ’ π‘œ 2 . Integrating the stress energy tensor (times π‘₯ ) along the dashed line gives the variation of logπ‘Ž 𝑑 (π‘œ) with respect to the outer radius 𝑆 (keeping the inner radius 𝑠 fixed) : πœ– logπ‘Ž 𝑑 (π‘œ) = 𝑗 2𝜌 π‘₯𝑒π‘₯ π‘ˆ 𝑑 π‘₯ + H. c. πœ– log 𝑆 And from the relation above between π‘ˆ 𝑒 (𝑨) and π‘ˆ 𝑑 π‘₯ one can show that : πœ– log π‘Ž 𝑑 (π‘œ)/π‘Ž 𝑒 = 𝑗 24π‘₯ 2 1 βˆ’ 1 𝑑 + H. c. = c 1 2𝜌 π‘₯𝑒π‘₯ π‘œ βˆ’ π‘œ π‘œ 2 πœ– log 𝑆 12 c 1 𝑆 So we have log π‘Ž 𝑑 (π‘œ)/π‘Ž 𝑒 = π‘œ βˆ’ π‘œ log𝑆 . By conformal invariance, this should in fact be a function or 𝑠 and 12 π‘œ βˆ’ π‘œ log 𝑦 c 1 𝑆 c 1 therefore: log π‘Ž 𝑑 (π‘œ)/π‘Ž 𝑒 = π‘œ βˆ’ π‘œ log 𝑠 = πœ— . This is the result announced on the previous slide. 12 6 68

  58. Entanglement spectrum in a 1d critical system β€œEntanglement spectrum in one-dimensional systems” P. Calabrese & A. Lefevre, Phys. Rev. A 78, 032329 (2008) The previous calculation gave Tr 𝜍 π΅π‘œ = π‘Ž(π‘œ)/π‘Ž(1) π‘œ log Tr 𝜍 π΅π‘œ = log 𝑆 π‘œ = log π‘Ž(π‘œ) βˆ’ π‘œ log π‘Ž 1 ~ 𝑑 1 π‘œ βˆ’ π‘œ log 𝑦 πœ— 6  From this, what can be said about the eigenvalues of 𝜍 𝐡 ? Density of β€œstates”: 𝑄 πœ‡ = πœ€(πœ‡ βˆ’ πœ‡ 𝑗 ) , with πœ‡ 𝑗 : eigenvalues of 𝜍 𝐡 β€’ 𝑗 π‘œ The moments 𝑆 π‘œ = πœ‡ 𝑗 have a relatively simple dependence on π‘œ : 𝑗 𝑆 π‘œ = e βˆ’π‘ π‘œβˆ’ 1 π‘œ with 𝑐 = 𝑑 6 log 𝑦 πœ— β€’ After a some mathematical manipulations… one obtains the (CFT) density of eigenvalues : βˆ’ 𝑑 with πœ‡ max = 𝑓 βˆ’π‘ = 𝑦 6 (largest eigenvalue) πœ— 69

  59. Entanglement spectrum in a 1d critical system P. Calabrese & A. Lefevre, Phys. Rev. A 78, 032329 (2008) 𝑑 𝑁 = πœ‡ 𝑗 𝑗=1…𝑁 By construction: 𝑑 𝑁 β†’ ∞ = 1 If one keeps only the M first eigenvalues, the discarded weight is 1 βˆ’ 𝑑 𝑁 . How do the properties of the of the approximate (truncated) wave-function vary with 𝑁 ? β†’ β€œfinite - entanglement scaling” L. Tagliacozzo et al. PRB 78, 024410 (2008) + many others… 70

  60. CFT & entropy of two disjoint intervals  S. Furukawa, V. Pasquier, and J. Shiraishi. β€œ Mutual Information and boson radius in a c=1 critical system in one dimension” . Phys. Rev. Lett., 102, 170602, 2009 The mutual information of two disjoint intervals contains more information about the long-distance properties than just the central charge (as for a single interval). In this example of critical spin chains with c=1 (Tomonaga-Luttinger liquid phase in the XXZ spin chain) 𝐽(𝐡: 𝐢) is a function of the so- callled β€œ compactification radius” (related to the exponent of several spin-spin correlation functions). 71

  61. Matrix-product states to describe weakly-entangled states in 1d, canonical (G. Vidal’s ) form 72

  62. Matrix-product states Review on DMRG (and MPS) Ann. of Phys. 326 , 96-192 (2011) β€œA practical introduction to tensor networks: Matrix product states and projected entangled pair states” RomΓ‘n OrΓΊs, Ann. of Phys. 349, 117 (2014) Original paper: β€œDensity matrix formulation for quantum renormalization groups”, S. R. White, Phys. Rev. Lett. 69, 2863 (1992) >2500 citations in WoS 73

  63. MPS & canonical Vidal’s form (1) G. Vidal, Phys. Rev. Lett. 91, 147902 (2003) Start from the wave function on an open chain of length 𝑀 (here a spin-1/2 example for simplicity): β€’ πœ” = 𝑁 𝜏 1 ,…,𝜏 𝑀 𝜏 1 , … , 𝜏 𝑀 𝑀 1 𝜏 1 ,…,𝜏 𝑀 ,=↑,↓ 𝑁 Split the chain in two parts [1 … π‘œ] βˆ’ [π‘œ + 1 … 𝑀] , β€’ 2 𝑀 coefficients and define the associated Shmidt basis and singular values: π‘œ Ξ¦ π‘š [1β‹―π‘œ] βŠ— Ξ¦ π‘š [π‘œ+1⋯𝑀] πœ” = πœ‡ π‘š π‘š β€’ Graphically: π‘œ + 1 … 𝑀 1 π‘œ π‘œ [1β‹―π‘œ] [π‘œ+1⋯𝑀] πœ” = Ξ¦ π‘š Ξ¦ π‘š πœ‡ π‘š β€’ In practice this decomposition can be obtained by Β« reshaping Β» M as rectangular matrix of size 2 π‘œ βˆ— 2 π‘€βˆ’π‘œ : 𝑁 𝜏 1 ,…,𝜏 𝑀 = 𝑁 𝜏 1 ,…,𝜏 π‘œ ,(𝜏 π‘œ+1 ,…,𝜏 𝑀 ) and performing its singular value decomposition (SVD). We assume that πœ” can be approximated using some low rank truncation β€’ with at most πœ“ Schmidt values. 74

  64. MPS & canonical Vidal’s form (2) β€’ Compare the Schmidt decompositions on two successives bonds: 1 π‘œ βˆ’ 1 π‘œ π‘œ + 1 … 𝑀 πœ” = [1β‹―π‘œ] [π‘œ+1⋯𝑀] Ξ¦ 𝑛 Ξ¦ 𝑛 π‘œ πœ‡ 𝑛 1 π‘œ βˆ’ 1 π‘œ π‘œ + 1 … 𝑀 [1β‹―π‘œβˆ’1] [π‘œβ‹―π‘€] Ξ¦ π‘š Ξ¦ π‘š π‘œβˆ’1 πœ‡ π‘š π‘œ Ξ¦ π‘š [π‘œβ‹―π‘€] in the orthogonal basis ↑ π‘œ , ↓ π‘œ ⨂ πœ‡ 𝑛 [π‘œ+1⋯𝑀] Write the Schmidt state Ξ¦ π‘š β€’ This defines on (each site π‘œ ) two matrices Ξ“ π‘œ ↑ and Ξ“ π‘œ ↓ of dimension πœ“ βˆ— πœ“ : β€’ π‘œ Ξ¦ 𝑛 π‘œ 𝜏 𝜏 π‘œ πœ‡ 𝑛 [π‘œβ‹―π‘€] = [π‘œ+1⋯𝑀] Ξ¦ π‘š Ξ“ π‘š,𝑛 𝜏=↑,↓ 𝑛=1 β€¦πœ“ 75

  65. MPS & canonical Vidal’s form (2) β€’ Graphically : 𝜏 π‘œ + 1 … 𝑀 𝑛 π‘š π‘š 𝑛 π‘œ 𝜏 π‘œ [π‘œ+1⋯𝑀] [π‘œβ‹―π‘€] Ξ“ π‘š,𝑛 πœ‡ 𝑛 Ξ¦ 𝑛 Ξ¦ π‘š = =Schmidt vector # π‘š for the [1 … π‘œ βˆ’ 1][π‘œ … 𝑀] partition =Schmidt vector # 𝑛 for the [1 … π‘œ][π‘œ + 1 … 𝑀] partition Repeat the procedure along the chain to construct all the matrices Ξ“ π‘œ ↑ and Ξ“ π‘œ ↓ from β€’ the Schmidt basis. 𝜏 1 𝜏 2 𝜏 3 𝜏 𝑀 πœ‡ [π‘€βˆ’1] πœ‡ [2] πœ‡ [3] πœ‡ [1] … 𝑨 𝑨 β€’ 𝑙 𝑙 π‘š π‘š Ξ“ 3 𝑛 𝑛 Finally: πœ” = Ξ“ 𝑀 Ξ“ 1 Ξ“ 2 𝜏 1 ,𝜏 2 ,…,𝜏 𝑀 =↑,↓ 𝑙,π‘š,𝑛,…,𝑨=1β€¦πœ“ 1 Ξ“ k,l 2 Ξ“ l,𝑛 3 β‹― πœ‡ 𝑨 π‘€βˆ’1 Ξ“ 𝑨 1 𝜏 1 πœ‡ 𝑙 2 𝜏 2 πœ‡ π‘š 3 𝜏 2 πœ‡ 𝑛 π‘€βˆ’1 𝜏 𝑀 𝜏 1 𝜏 2 β‹― 𝜏 𝑀 = Ξ“ 𝑙 𝜏 1 ,𝜏 2 ,…,𝜏 𝑀 =↑,↓ 𝑙,π‘š,𝑛,…,𝑨=1β€¦πœ“ β€’ Encodes all the left-right Schmidt decomposition Storage : ∼ 𝑀 βˆ— πœ“ + 2πœ“ 2 β‰ͺ 2 L if πœ“ can be kept 𝒫 1 [gapped system] or, at worse, 𝒫 𝑀 𝛽 β€’ [critical] 76

  66. MPS & canonical Vidal’s form (3) 𝜏 1 𝜏 2 𝜏 3 𝜏 𝑀 πœ‡ [π‘€βˆ’1] πœ‡ [2] πœ‡ [3] πœ‡ [1] … 𝑨 𝑨 𝑙 𝑙 π‘š π‘š Ξ“ 3 𝑛 𝑛 Ξ“ 𝑀 Ξ“ 1 Ξ“ 2 =Canonical MPS form  Allows to reconstruct the Schmidt decomposition for any left/right partition 𝜏 π‘œ 𝜏 𝑀 n … L 𝑙 Ξ“ π‘œ 𝑙 … [π‘œβ€¦π‘€] Ξ“ 𝑀 Ξ¦ 𝑙 =  Orthogonality of the Schmidt vectors 𝑙 Ξ“ π‘œ … Ξ“ 𝑀 [π‘œβ€¦π‘€] Ξ¦ 𝑙′ [π‘œβ€¦π‘€] = Ξ¦ 𝑙 = πœ€ 𝑙𝑙′ 𝑙′ Ξ“ π‘œ … Ξ“ 𝑀 𝜏 π‘œ ,𝜏 π‘œ+1 ,…,𝜏 𝑀 =↑,↓ nb: automatically insures πœ” πœ” = 1 77

  67. MPS & canonical Vidal’s form (4) 𝜏 𝑗 𝜏 π‘˜ 𝑗 β‹… 𝑇 𝑗+1 𝜏 𝑗 𝜏 𝑗 β‹… 𝑇 𝑇 = πœβ€² 𝑗 πœβ€² π‘˜ 𝑇 π‘˜  Local observables. Example of a 2-spin operator π‘˜ πœβ€² π‘˜ πœβ€² 𝑗 … Ξ“ 𝑀 Ξ“ 1 Ξ“ 2 Ξ“ 3 πœβ€² 2 πœβ€² 3 2 β‹… 𝑇 3 𝑇 𝑗 β‹… 𝑇 𝑗+1 πœ” = πœ” 𝑇 𝜏 1 𝜏 2 𝜏 3 𝜏 𝑀 … Ξ“ 𝑀 Ξ“ 1 Ξ“ 2 Ξ“ 3 Ξ“ 2 Ξ“ 3 πœβ€² 2 πœβ€² 3 2 β‹… 𝑇 3 𝑇 = Only local operations required 𝜏 2 𝜏 3 Ξ“ 2 Ξ“ 3 78

  68. MPS Alogorithms  Many algorithms exist to compute et manipulate MPS on long chains : β€’ Variationnal algorithms: successively optimize the tensors to lower the energy and obtain the ground-state of a given Hamiltonian (DMRG) β€’ Alternative approach: perform an imaginary-time evolution to get the ground-state (TEBD) β€’ Perform the (unitary) time evolution starting from an arbitrary state (t-DMRG & TEBD) β€’ Infinite-chain methods (iTEBD) β€’ Extension to finite-temperature (i.e. MPS to describe mixed states)  Example: two-site unitary operation β€’ Consider unitary β€œgate” 𝑉 π‘œ,π‘œ+1 acting on sites π‘œ and π‘œ + 1 : 𝜏 π‘œ 𝜏 π‘œ+1 [1β‹―π‘œβˆ’1] [π‘œ+2⋯𝑀] Ξ¦ π‘š Ξ¦ π‘š 𝑉 π‘œ,π‘œ+1 π‘œβˆ’1 π‘œ π‘œ+1 Ξ“ π‘œβˆ’1 Ξ“ π‘œ Ξ“ π‘œ+1 Ξ“ π‘œ+2 𝑉 π‘œ,π‘œ+1 πœ” = πœ‡ π‘š πœ‡ 𝑛 πœ‡ 𝑛 π‘œβˆ’1 and Schmidt basis Ξ¦ π‘š [1β‹―π‘œβˆ’1] are not modified by 𝑉 π‘œ,π‘œ+1 The schmidt values πœ‡ π‘š β€’ π‘œ+1 and the basis Ξ¦ π‘š [π‘œ+2⋯𝑀] Same for πœ‡ 𝑛 β€’ οƒ˜ Only Ξ“ π‘œ , Ξ“ π‘œ+1 πœ‡ 𝑛 π‘œ need to be updated β†’ fast local updates 𝒫 πœ“ 3  Using small time steps, the observation above can be used to compute the real time evolution (here for nearest-neighbor spin-spin interactions): 79

  69. Summary of lecture #3 𝐹 𝑙  Dimerized (free fermion) chain: β€œmetal versus band insulator” βˆ’ 𝜌 + 𝜌 2 2 𝒖 𝒖′ Ξ” 𝑙  Fermi surface contribution to the entanglement in 𝑒 > 1 [Gioev & Klich , 2006]  Entanglement in critical 1d systems & conformal field theory [Holzhey-Larsen Wilckek 1994] 𝑇~ 𝑑 3 log 𝑀  Entanglement spectrum from CFT – decay of the Schmidt values [Calabrese Lefevre 2008]  Two intervals: more information than the central charge [Furukawa-Pasquier-Shiraishi 2009]  Matrix product states: a powerful way to encode (weakly entangled) states 𝜏 1 𝜏 2 𝜏 3 𝜏 𝑀 πœ‡ [π‘€βˆ’1] πœ‡ [3] πœ‡ [2] πœ‡ [1] … 𝑨 𝑨 𝑙 𝑙 π‘š π‘š Ξ“ 3 𝑛 𝑛 Ξ“ 𝑀 Ξ“ 1 Ξ“ 2 80

  70. Tensor-product states in d>1 How to generalize MPS to d>1 ?  β€œSnake” MPS β€’ Quite powerful in practice (produced new results on several frustrated spin systems) β€’ But… problem with the area law β†’ requires and exponential growth the the matrix dimension with the transverse dimension β€’ Reference: β€œ Studying Two-Dimensional Systems with the Density Matrix Renormalization Group ” E. M. Stoudenmire and S. R. White Ann. Rev. of Cond. Mat. Phys. 3, 111 (2012)  Use tensor networks (=more than two virtual indices) β€’ Finite-rank tensor can reproduce area laws β€’ High computation cost in practice (to perform contractions, tensor optimizations, …) , but very prosmissing. β€œ A practical introduction to tensor networks: Matrix product states and projected entangled pair states ” RomΓ‘n OrΓΊs, Ann. of Phys. 349, 117 (2014) 81

  71. Multi-scale Entanglement Renormalization Ansatz β€œEntanglement Renormalization”, G. Vidal Phys. Rev. Lett. 99, 220405 (2007); β€œClass of Quantum Many-Body States That Can Be Efficiently Simulated”, G. Vidal Phys. Rev. Lett. 101, 110501 (2008). οƒ˜ Can reproduce the 𝑇~ 𝑑 3 log π‘š behavior with constant tensor dimensions β†’ adapted for 1d critical systems (and generalizations exists in 𝑒 > 1 ) οƒ˜ The different β€œlayers” of the network correspond to different length scales (RG idea) 82

  72. Corrections to the area law in 2d systems 2 examples showing (universal) subleading corrections: a magnet with gapless Goldstone modes (spin waves) and a quantum dimer model in a β€œtopological” ( Z 2 ) phase 83

  73. Area law in 2d – spin Β½ Heisenberg model β€œAnomalies in the entanglement properties of the square-lattice Heisenberg model” A. B. Kallin, M. B. Hastings, R. G. Melko & R. R. P. Singh, Phys. Rev. B 84, 165134 (2011) +see also: D. J. Luitz, X. Plat, F. Alet, & N. Laflorencie, Phys. Rev. B 91, 155145 (2015) Magnetic long-range order ↔ spontaneous SU(2) symmetry braking β†’ gapless spin waves (Goldstone modes) β†’ additive log(L) correction to the entanglement entropy. area law coeff. 𝑂 𝐻 Metlitsky-Grover [2011] β†’the coefficient of the log (π‘š) term is 𝑑 = 2 (in 𝑒 = 2 ) where 𝑂 𝐻 is the number of Nambu-Goldstone modes (consistent with the numerics above). 84

  74. Area law in 2d – quantum dimer model S. Furukawa & GM, Phys Rev B 2007 Quantum dimer model wave-function J.-M. StΓ©phan, GM & V. Pasquier J. Stat. Mech. 2012 πœ” = 𝑑 = Equal amplitude superposition Local hard-core constraint all the hardβˆ’core dimer coverings π‘‘βˆˆ of the triangular lattice 𝑀 𝑦 β†’ ∞ A=Β½-infinite A=disk 𝑀 cylinder 𝑆 t: fugacity for dimers on horizontal bonds Universal subleading Term -log(2) radius 𝑆 circunference 𝑀 85

  75. Bulk-edge correspondance in 2d Relation between the entanglement `Hamiltonian ’ and physical edge modes. Topological entanglement entropy 86

  76. Topological phases of matter  Ground state properties  No spontaneously broken symmetry, no local order parameter (β€œquantum liquids”)  The ground-state degeneracy depends on the topology  Degenerate ground-state are locally undistinguishable E E E Example of a Z 2 Liquid :  Elementary excitations β€’ Excitations are gapped (at least in the bulk) β€’ Quantum number fractionalization (elementary excitations must be created in pairs, and can then be separated far away) Examples: fractional electric charges (FQHE), or spin-1/2 excitations in magnetic insulators β€’ Exotic statistics in 2d (can be different from fermions & bosons, and can even be non-Abelian)  Examples β€’ Theoretical realizations: many models with fermions, bosons, spins, strings, dimers … β€’ Experimental realizations: β€’ fractional quantum Hall effect β€’ some exotic superconductors ? β€’ some magnetic insulators (spin liquids) ?  Closely related phases : β€’ Integer quantum Hall effect β€’ Topological insulators β€’ … 87

  77. Fractional quantum Hall effect  Β«Two-Dimensional Magnetotransport in the Extreme Quantum Limit Β» D. C. Tsui, H. L. StΓΆrmer, and A. C. Gossard, Phys. Rev. Lett. 48 , 1559 (1982) [Web od Science: ~2100 citations]  β€œAnomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations”, R. Willett, J. P. Eisenstein, H. L. StΓΆrmer, D. C. Tsui, A. C. Gossard, R. B. Laughlin Phys. Rev. Lett. 50, 1395 &J. H. English, Phys. Rev. Lett. 59, 1776 (1987) (1983) [Web od Science: ~3000 citations] exp βˆ’ 1 πœ‰ = 1 𝑛 2 πœ” Laughlin 𝑨 𝑗 = 𝑨 π‘˜ βˆ’ 𝑨 π‘˜ 4 𝑨 π‘˜ 𝑛 𝑛: odd integer π‘˜<𝑙 π‘˜ 88

  78. Gapless edge modes All the excitation in the bulk are gapped Gapless excitations exists along the edge. This gaplessness is β€œprotected” by some topological properties of the wave function in the bulk (and/or some symmetries) Examples: Quantum hall phases, Chiral spins liquids, Topological insulators, … 89

  79. Bulk-edge correspondence in 2d (0)  H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008)  Xiao-Liang Qi, Hosho Katsura, and Andreas W. W. Ludwig, Phys. Rev. Lett. 108, 196402 (2012) 90

  80. Bulk-edge correspondence in 2d (1) Qi-Katsura-Ludwig argument in presence of gapless edge excitations β€’ Assumption 1: the system is gapped in the bulk, but with gapless edge states Examples: integer Hall effect, fractional Hall effect, topological insulators, chiral spin liquids, … Treat the coupling πœ‡ between A and B perturbatively. Assumption 2: there is β€’ some adiabatic continuity from πœ‡ = 1 (homogenous system) and 0 < πœ‡ β‰ͺ 1 (two weakly coupled cylinders), and the result for the spectrum of the reduced density matrix will not qualitatively change. Due to the presence of a gap in the bulk, the (perturbative) ground state 𝐻 β€’ can be described in the space of the low energy edge modes of A & B (this should at least be true if Ξ” is sent to ∞) 𝐹 𝐡 𝐹 𝑐 Two (weakly) coupled Bulk excitations Bulk excitations edges In region A In region B Ξ” Gapless edge states Gapless edge states β€œLeft” modes π‘œ, 𝑀 β€œRight” modes π‘œ, 𝑆 91

  81. Bulk-edge correspondence in 2d (2) Qi-Katsura-Ludwig argument: mapping to a quantum quench problem 𝑏 (topo. Sector) 𝐼 𝑀 Calabrese-Cardy (2006) result about the a global quench in a critical 1d system: πœ‡ = 0 - to obtain the long time & long-distance 𝐼 𝑆 correlations, the initial state can be replaced by 𝑓 βˆ’πœ(𝐼 𝑀 +𝐼 𝑆 ) 𝐻 βˆ— 𝑒 = 0 𝑒 > 0 - 𝜐 is a finite non-universal constant πœ”(𝑒) = 𝑓 βˆ’π‘—πΌπ‘’ 𝐻 πœ”(0) = 𝐻 (β€œextrapolation length”). - 𝐻 βˆ— : scale/conformally-invariant Ground-state of 𝜍 𝑀 (𝑒) = 𝑓 βˆ’π‘—πΌ 𝑀 𝑒 𝜍 𝑀 (0)𝑓 +𝑗𝐼 𝑀 𝑒 𝐼 𝑀 + πœ‡πΌ π‘—π‘œπ‘’ + 𝐼 𝑆 boundary state (fixed point of an RG flow 𝜍 𝑀 = π‘ˆπ‘  𝑆 𝐻 𝐻 starting from 𝐻 ). Entanglement entropy & spectrum ( 𝑀 and 𝑆 are entangled) of 𝜍 𝑀 (𝑒) : independent of 𝑒 . - Rational CFT: 𝐻 βˆ— is a linear combination of all excited states, 𝐻 βˆ—,𝑏 ~ 𝑙, π‘˜, 𝑏 𝑀 𝑙, π‘˜, 𝑏 𝑆 maximally entangled combination between the L and R edges. 𝑙 π‘˜ 𝑓 βˆ’2πœπ‘€π‘™ 𝑙, π‘˜, 𝑏 𝑀 βˆ’π‘™, π‘˜, 𝑏 𝑆 𝑓 βˆ’πœ(𝐼 𝑀 +𝐼 𝑆 ) 𝐻 βˆ—,𝑏 ~ momentum 𝑙>0 π‘˜ Entanglement Hamiltonian 𝜍 𝑀,𝑏 ~ 𝑓 βˆ’4πœπ‘€π‘™ 𝑙, π‘˜, 𝑏 𝑀 𝑙, π‘˜, 𝑏 𝑀 ~exp (βˆ’4𝜐𝐼 𝑀 ) (universal part of) : ~𝐼 𝑀 𝑙>0 π‘˜ 92

  82. (real space) Entanglement spectrum & quantum Hall effect πœ‰ = 1 (Integer Q. Hall effect) 1 Laughlin πœ‰ = 3 (8 particles) Low β€œenergy” part of the 1 Laughlin πœ‰ = 3 entanglement spectrum is gapless (in the thermodynamic limit) has the 1 Coulomb πœ‰ = same structure (linear 3 dispersion & degeneracies) as that of a massless chiral free boson, which also describe the physical edge modes 1 (12 particles, πœ‰ = 3 Laughlin’s state) J. Dubail, N. Read, and E. H. Rezayi, A. Sterdyniak, A. Chandran, N. Regnault, Phys. Rev. B 85, 115321 (2012) B. A. Bernevig, and P. Bonderson, Phys. Rev. B 85 , 125308 (2012) 93

  83. Bulk-edge correspondence in 2d – Free fermion edge (1) Toy model: free chiral fermions at the edge [Qi, Katsura & Ludwig et al. PRL 2012] 𝜁 = 𝑀𝑙 † 𝑑 𝑙 † 𝑑 𝑙 𝐼 𝑆 = 𝑀 𝑙𝑑 𝑙 𝑙 𝑙 Particle-hole excitations 𝜁 = βˆ’π‘€π‘™ πœ–πœ— πœ–π‘™ = ±𝑀 propagate at velocity † 𝑒 𝑙 † 𝑒 𝑙 𝐼 𝑀 = βˆ’π‘€ 𝑙𝑒 𝑙 𝑙 𝑙 † 𝑒 𝑙 + 𝑒 𝑙 † 𝑑 𝑙 𝐼 int = Ξ” 𝑑 𝑙 = tunneling from one edge to another, with momentum conservation 𝑙 𝑑 𝑙 𝑀𝑙 Ξ” † † 𝐼 = 𝐼 𝑆 + 𝐼 𝑀 + 𝐼 int = 𝑑 𝑙 𝑒 𝑙 𝑒 𝑙 Ξ” βˆ’π‘€π‘™ 𝑙 Diagonalization using new fermionic creation/annihilation operators: 𝑀𝑙 2 + Ξ” 2 ( β†’ gapped spectrum) † 𝑏 𝑙 βˆ’ 𝑐 𝑙 † 𝑐 𝑙 𝐼 = 𝐹 𝑙 𝑏 𝑙 , 𝐹 𝑙 = 𝑙 𝑏 𝑙 𝑑 𝑙 𝛽 𝑙 𝛾 𝑙 𝐹 𝑙 +𝑀𝑙 𝐹 𝑙 βˆ’π‘€π‘™ 𝑐 𝑙 = 𝑒 𝑙 with 𝛽 𝑙 = 2𝐹 𝑙 and 𝛾 𝑙 = 2𝐹 𝑙 βˆ’π›Ύ 𝑙 𝛽 𝑙 94

  84. Bulk-edge correspondence in 2d – Free fermion edge (2) Toy model: free chiral fermions at the edge [Qi, Katsura & Ludwig et al. PRL 2012] 𝑏 𝑙 𝑑 𝑙 𝛽 𝑙 𝛾 𝑙 𝐹 𝑙 +𝑀𝑙 𝐹 𝑙 βˆ’π‘€π‘™ 𝑐 𝑙 = 𝑒 𝑙 with 𝛽 𝑙 = 2𝐹 𝑙 and 𝛾 𝑙 = 2𝐹 𝑙 βˆ’π›Ύ 𝑙 𝛽 𝑙 Since the Hamiltonian is quadratic in the Fermion operators, it is β€œGaussian” and can be written as some exponential of a quadratic form acting on some vacuum. In the present case we want to write the ground-state 𝐻 of the two coupled edges in the form: 𝐻 = exp βˆ’πΆ 𝐻 𝑀 ⨂ 𝐻 𝑆 where 𝐻 𝑀/𝑆 is the ground-state of 𝐼 𝑀/𝑆 . 𝐢 should contain terms that β€œdress” the two edges by particle hole-excitations, keeping the total momentum as well as the total number of Fermions. 𝐢 should therefore have the following form: (using the 𝑙 ⟷ βˆ’k & L ⟷ 𝑆 symmetry) † 𝑑 βˆ’π‘™ † 𝑒 𝑙 + 𝑒 βˆ’π‘™ 𝜁 𝐢 = πœ‡ 𝑙 𝑑 𝑙 𝑙>0 𝑙 † ). How to determine πœ‡ 𝑙 ? Insure that 𝐻 is annihilated by 𝑏 𝑙 (and 𝑐 𝑙 Commute 𝑏 𝑙 and 𝑓 βˆ’πΆ : 𝜁 𝐢, 𝑏 𝑙 = 𝐢, 𝛽 𝑙 𝑑 𝑙 + 𝛾 𝑙 𝑒 𝑙 = βˆ’πœ‡ 𝑙 𝛽 𝑙 𝑒 𝑙 if 𝑙 > 0 if 𝑙 < 0 πœ‡ βˆ’π‘™ 𝛾 𝑙 𝑑 𝑙 𝑙 𝐢, 𝐢, 𝑏 𝑙 = 0 β†’ Baker – Campbell – Hausdorff formula gives: 𝑏 𝑙 exp βˆ’πΆ = exp βˆ’πΆ 𝑏 𝑙 + 𝐢, 𝑏 𝑙 95

  85. Bulk-edge correspondence in 2d – Free fermion edge (3) Toy model: free chiral fermions at the edge [Qi, Katsura & Ludwig et al. PRL 2012] 𝜁 𝐻 𝑆 𝐢, 𝑏 𝑙 = 𝐢, 𝛽 𝑙 𝑑 𝑙 + 𝛾 𝑙 𝑒 𝑙 = βˆ’πœ‡ 𝑙 𝛽 𝑙 𝑒 𝑙 if 𝑙 > 0 if 𝑙 < 0 πœ‡ βˆ’π‘™ 𝛾 𝑙 𝑑 𝑙 𝑙 So: 𝑏 𝑙 exp βˆ’πΆ = exp βˆ’πΆ 𝛿 𝑙 πœπ‘™ With 𝛿 𝑙 = 𝑏 𝑙 + 𝐢, 𝑏 𝑙 = 𝛽 𝑙 𝑑 𝑙 + 𝛾 𝑙 𝑒 𝑙 βˆ’ πœ‡ 𝑙 𝛽 𝑙 𝑒 𝑙 if 𝑙 > 0 𝐻 𝑀 if 𝑙 < 0 𝛽 𝑙 𝑑 𝑙 + 𝛾 𝑙 𝑒 𝑙 + πœ‡ βˆ’π‘™ 𝛾 𝑙 𝑑 𝑙 𝑙 We determine πœ‡ 𝑙 by requiring that 𝛿 𝑙 annihilates 𝐻 𝑀 ⨂ 𝐻 𝑆 : 𝛿 𝑙 = 𝛽 𝑙 𝑑 𝑙 + 𝛾 𝑙 𝑒 𝑙 𝛾 𝑙 βˆ’ πœ‡ 𝑙 𝛽 𝑙 if 𝑙 > 0 if 𝑙 < 0 𝑑 𝑙 𝛽 𝑙 + πœ‡ βˆ’π‘™ 𝛾 𝑙 𝑑 𝑙 + 𝛾 𝑙 𝑒 𝑙 (note that the 2 conditions above are equivalent since 𝛽 𝑙 = 𝛾 βˆ’π‘™ ) 𝐹 𝑙 2 βˆ’ 𝑀𝑙 2 πœ‡ 𝑙 = 𝛾 𝑙 𝐹 𝑙 βˆ’ 𝑀𝑙 Ξ” = 𝐹 𝑙 + 𝑀𝑙 = = 𝐹 𝑙 + 𝑀𝑙 𝛽 𝑙 𝐹 𝑙 + 𝑀𝑙 Final expression for the ground-state: Ξ” † 𝑑 βˆ’π‘™ † 𝑒 𝑙 + 𝑒 βˆ’π‘™ 𝐻 = exp βˆ’ 𝐻 𝑀 ⨂ 𝐻 𝑆 𝐹 𝑙 + 𝑀𝑙 𝑑 𝑙 𝑙>0 Reduced density matrix for the L-edge ? 96

  86. Bulk-edge correspondence in 2d – Free fermion edge (4) Toy model: free chiral fermions at the edge [Qi, Katsura & Ludwig et al. PRL 2012] 𝜁 1 βˆ’π‘™,𝑆 0 𝑙,𝑆 𝐻 𝑆 𝑙 Ξ” † 𝑑 βˆ’π‘™ † 𝑒 𝑙 + 𝑒 βˆ’π‘™ 𝐻 = exp βˆ’ 𝐹 𝑙 + 𝑀𝑙 𝑑 𝑙 𝐻 𝑀 ⨂ 𝐻 𝑆 𝑙>0 πœπ‘™ Remark: modes with different 𝑙 are independent, and all the terms 0 βˆ’π‘™,𝑀 1 𝑙,𝑀 𝐻 𝑀 𝑙 in the exponential above commute with each other. † 𝑑 βˆ’π‘™ 0 βˆ’π‘™,𝑀 1 βˆ’π‘™,𝑆 † 𝑒 𝑙 1 𝑙,𝑀 0 𝑙,𝑆 𝐻 = 1 βˆ’ πœ‡ 𝑙 𝑑 𝑙 1 βˆ’ πœ‡ 𝑙 𝑒 βˆ’π‘™ 𝑙>0 𝑙>0 𝐻 = 1 𝑙,𝑀 0 𝑙,𝑆 βˆ’ πœ‡ 𝑙 0 𝑙,𝑀 1 𝑙,𝑆 0 βˆ’π‘™,𝑀 1 βˆ’π‘™,𝑆 βˆ’ πœ‡ 𝑙 1 𝑙,𝑀 0 𝑙,𝑆 𝑙>0 𝑙>0 Normalize -> Schmidt decomposition : 1 πœ‡ 𝑙 1 𝐻 = 1 + πœ‡ 𝑙 2 1 𝑙,𝑀 0 𝑙,𝑆 βˆ’ 1 + πœ‡ 𝑙 2 0 𝑙,𝑀 1 𝑙,𝑆 1 + πœ‡ 𝑙 2 0 βˆ’π‘™,𝑀 1 βˆ’π‘™,𝑆 𝑙>0 𝑙>0 πœ‡ 𝑙 βˆ’ 1 + πœ‡ 𝑙 2 1 𝑙,𝑀 0 𝑙,𝑆 97

  87. Bulk-edge correspondence in 2d – Free fermion edge (3) Toy model: free chiral fermions at the edge [Qi, Katsura & Ludwig et al. PRL 2012] Schmidt decomposition : 1 πœ‡ 𝑙 1 𝐻 = 1 + πœ‡ 𝑙 2 1 𝑙,𝑀 0 𝑙,𝑆 βˆ’ 1 + πœ‡ 𝑙 2 0 𝑙,𝑀 1 𝑙,𝑆 1 + πœ‡ 𝑙 2 0 βˆ’π‘™,𝑀 1 βˆ’π‘™,𝑆 𝑙>0 𝑙>0 πœ‡ 𝑙 1 + πœ‡ 𝑙 2 1 𝑙,𝑀 0 𝑙,𝑆 βˆ’ Reduced density matrix for the L -edge: 1 1 1 + πœ‡ 𝑙 2 0 0 𝑙,𝑆 + πœ‡ 𝑙 2 1 1 𝑙,𝑆 1 + πœ‡ 𝑙 2 1 1 βˆ’π‘™,𝑆 + πœ‡ 𝑙 2 0 0 βˆ’π‘™,𝑆 𝜍 𝑆 = 𝑙>0 𝑙>0 1 1 πœ‡ 𝑙 2 𝑑 𝑙 πœ‡ 𝑙 2 𝑑 βˆ’π‘™ 𝑑 βˆ’π‘™ † 𝑑 𝑙 † 𝜍 𝑆 = 1 + πœ‡ 𝑙 2 exp log 1 + πœ‡ 𝑙 2 exp log 𝑙>0 𝑙>0 Ξ” 1 𝑀𝑙 πœ‡ 𝑙 2 β‰ˆ βˆ’2 𝑀𝑙 Expand for 𝑙 β†’ 0 : πœ‡ 𝑙 = 𝐹 𝑙 +𝑀𝑙 β‰ˆ β‰ˆ 1 βˆ’ Ξ” β†’ log Ξ” 1+ 𝑀𝑙 Ξ” 𝜍 𝑆 ~ exp βˆ’2 𝑀𝑙 = exp βˆ’2 𝑀𝑙 † 𝑑 βˆ’π‘™ + 1 † 𝑑 𝑙 + 𝑑 βˆ’π‘™ 𝑑 βˆ’π‘™ † † 𝑑 𝑙 βˆ’ 𝑑 βˆ’π‘™ 𝑑 𝑙 𝑑 𝑙 Ξ” Ξ” 𝑙>0 𝑙>0 = exp βˆ’2 𝑀𝑙 exp βˆ’ 2 † 𝑑 𝑙 + 𝑑𝑑𝑒. Ξ” 𝑑 𝑙 ~ Ξ” 𝐼 𝑆 𝑙 Ξ” β†’ The 𝑆 -edge is seen at some effective temperature T eff = 2 . Entanglement Hamiltonian ~ 𝐼 𝑆 98

  88. Bulk-edge correspondence in a spin ladder  Spin ladder model A πœ‡ 𝑲  β€œEntanglement Spectra of Quantum Heisenberg Ladders” , D. Poilblanc, Phys. Rev. Lett. 105 , 077202 (2010). οƒ˜ Numerical observation: the ES of 𝐡 (upper chain) is very similar 1 to the (energy) spectrum of the Heisenberg spin- 2 chain . NB: Des Cloizeaux Pearson [1962] dispersion relation for a single chain: 𝜌 πœ— 𝑙 = 2 sin 𝑙 . 99

  89. Bulk-edge correspondence in a spin ladder  β€œ On the relation between entanglement and subsystem Hamiltonians ” , I. Peschel and M.-C. Chung, EPL 96 , 50006 (2011). Idea: compute the entanglement spectrum (of the region 𝐡 ) perturbatively in πœ‡ . πœ‡ A 𝑲 𝑇 𝑗𝑏 β‹… 𝑇 𝑗𝑐 𝐼 = 𝑲 𝑇 + πœ‡ 𝐼 𝐡 + 𝐼 𝐢 𝑗=1… 𝑀 𝑗𝑏 β‹… 𝑇 𝑗+1 𝑏 𝑗𝑐 β‹… 𝑇 𝑗+1 𝑐 𝐼 𝐡 = 𝑇 𝐼 𝐢 = 𝑇 𝑗 𝑗 1 4πœ‡ 𝐾 𝐼 𝐡 + 𝒫 πœ‡ 2  Result: 𝜍 𝐡 ≃ π‘Ž exp βˆ’ 𝜍 𝐡 =Thermal density matrix (for small πœ‡ ) β€’ 𝐾 Effective temperature π‘ˆ eff = β€’ 4πœ‡ Entanglement Hamiltonian (defined by βˆ’log (𝜍 𝐡 )) is proportional β€’ to the real Hamiltonian 𝐼 𝐡 of the upper chain. 100

Recommend


More recommend