image warping
play

IMAGE WARPING Vuong Le Dept. Of ECE University of Illinois ECE - PowerPoint PPT Presentation

IMAGE WARPING Vuong Le Dept. Of ECE University of Illinois ECE 417 Spring 2013 With some slides from Alexei Efros, Steve Seitz, Jilin Tu, and Hao Tang Content Introduction Parametric warping Barycentric coordinates


  1. IMAGE WARPING Vuong Le Dept. Of ECE University of Illinois ECE 417 – Spring 2013 With some slides from Alexei Efros, Steve Seitz, Jilin Tu, and Hao Tang

  2. Content • Introduction • Parametric warping • Barycentric coordinates • Interpolation • MP 6

  3. Content • Introduction • Parametric warping • Barycentric coordinates • Interpolation • MP 6

  4. Image Warping image filtering: change range of image g(x) = T(f(x)) f g T x x image warping: change domain of image g(x) = f(T(x)) f g T x x

  5. Image Warping image filtering: change range of image g(x) = T(f(x)) f g T image warping: change domain of image g(x) = f(T(x)) f g T

  6. Global parametric image warping Examples of parametric warps: aspect rotation translation perspective cylindrical affine

  7. Piecewise parametric image warping • Define a mesh of small shape units: triangles/quadrangles • Apply different transformations for different units M1 M2

  8. Non-parametric warping • Move control points of a grid • Use thin plate splines to produces a smooth vector field

  9. Image morphing

  10. Photoshop examples

  11. Photoshop examples

  12. Content • Introduction • Parametric warping • Barycentric coordinates • Interpolation • MP 6

  13. Parametric image warping T p = (x,y) p’ = (x’,y’) Transformation T is a coordinate-changing machine: What does it mean that T is parametric? ° can be described by just a few numbers (parameters) How to represent global and local transforms? ° Global: T Is the same for any point p in the image ° Local: T can be different at different location Let’s try to represent T as a matrix: p’ = M p     x ' x =   M       y ' y

  14. Scaling = Scaling operation: x ' ax = y ' by Or, in matrix form:       x ' a 0 x =             y ' 0 b y scaling matrix S

  15. 2-D Rotation (x’, y’) x’ = x cos ( θ ) - y sin ( θ ) (x, y) y’ = x sin ( θ ) + y cos ( θ ) ( ) ( ) θ − θ       x ' cos sin x =       ( ) ( ) θ θ θ       y ' sin cos y R

  16. Shearing in x  The y coordinates are unaffected, but the x coordinates are translated linearly with y  That is = +       x ' 1 sh x x ' x sh * y = y y       =       y ' y y ' 0 1 y

  17. Shearing in y   =     1 0 x ' x x ' x =       = + y ' sh * x y       y ' sh 1 y x x

  18. 2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Shear?       = + sh 1 x x x ' x sh * y ' = x x       = + y sh x y ' *   sh   1 y '   y y y 2D Mirror about Y axis? −      x ' 1 0 x = − = x ' x       =       y ' 0 1 y y ' y 2D Mirror over (0,0)? −       x ' 1 0 x = − = x ' x −             = − y ' 0 1 y y ' y

  19. 2x2 Matrices What types of transformations can be represented with a 2x2 matrix? 2D Translation? = + x x t ' x NO! = + y ' y t y Only linear 2D transformations can be represented with a 2x2 matrix

  20. All 2D Linear Transformations Linear transformations are combinations of … ° Scale,       x ' a b x ° Rotation, =       ° Shear, and       y ' c d y ° Mirror Properties of linear transformations: ° Origin maps to origin ° Lines map to lines ° Parallel lines remain parallel ° Distance or length ratios are preserved on parallel lines ° Ratios of areas are preserved

  21. Homogeneous Coordinates Q: How can we represent translation as a 3x3 matrix? = + x ' x t x = + y ' y t y

  22. Homogeneous Coordinates Q: How can we represent translation as a 3x3 matrix? = + x x t ' x = + y ' y t y   t 1 0 x   A: Using the rightmost column: = T ranslation 0 1 t   y   0 0 1         x ' 1 0 t x x       =  y ' 0 1 t * y      y           1 0 0 1 1  

  23. Homogeneous Coordinates Add a 3rd coordinate to every 2D point ° (x, y, w) represents a point at location (x/w, y/w) ° (x, y, 0) represents a point at infinity ° (0, 0, 0) is not allowed • Convenient coordinate system to represent many useful transformations • (aw, bw, w) represent the same 2D point for any value of w y 2 1 (2,1,1) or (4,2,2) or (6,3,3) x 2 1

  24. Basic 2D Transformations Basic 2D transformations as 3x3 matrices             x ' s 0 0 x x ' 1 0 t x x x             = = y ' 0 s 0 y y ' 0 1 t y             y y                         1 0 0 1 1 1 0 0 1 1 Translate Scale Θ − Θ             x ' cos sin 0 x x ' 1 sh 0 x x             = Θ Θ = y ' sin cos 0 y y ' sh 1 0 y             y                  1  0 0 1 1       1 0 0 1 1 Rotate Shear

  25. Affine Transformations Affine transformations are combinations of …       x a a a u ° Linear 2D transformations, and 1 2 0       = ° Translations y b b b v       1 2 0 Properties of affine transformations:             1 0 0 1 1 ° Origin does not necessarily map to origin ° Lines map to lines ° Parallel lines remain parallel ° Length/distance ratios are preserved on parallel lines ° Ratios of areas are preserved

  26. Solution to Affine Warping       x a a a u 1 2 0       = y b b b v       1 2 0             1 0 0 1 1

  27. “Triangle-wise” parametric image warping • For each transformed image frame ° Define a mesh of triangles ° Find a affine transform from each triangle’s vertices, apply it to other points inside the triangle  Have to solve affine transforms at every frame M1 M2

  28. Content • Introduction • Parametric warping • Barycentric coordinates • Interpolation • MP 6

  29. Affine warping for triangles

  30. Barycentric Coordinates

  31. Barycentric Coordinates Fact

  32. Content • Introduction • Parametric warping • Barycentric coordinates • Interpolation • MP 6

  33. Image Warping Implementation I

  34. Forward Mapping

  35. Forward Mapping

  36. Forward Mapping

  37. Image Warping Implementation II

  38. Reverse Mapping

  39. Resampling Evaluate source image at arbitrary (u, v) ° (u, v) does not usually have integer coordinates Some kinds of resampling ° Nearest neighbor ° Bilinear interpolation ° Gaussian filter Source Image Destination Image

  40. Nearest neighbor Take value at closest pixel int iu = trunc(u + 0.5); int iv = trunc(v + 0.5); dst(x, y) = src(iu, iv); Simple, but causes aliasing

  41. Bilinear interpolation Bilinearly interpolate four surrounding pixels a = linear interpolation of src(u 1 , v 1 ) and src(u 2 , v 1 ) b = linear interpolation of src(u 1 , v 2 ) and src(u 2 , v 2 ) dst(x, y) = linear interpolation of ‘a’ and ‘b’ a (u1,v1) (u2,v1) (x,y) (u2,v2) (u1,v2) b

  42. Gaussian Filter Convolve with Gaussian filter Width of Gaussian kernel affects bluriness

  43. Image Warping Implementation II – with resampling

  44. Image Warping Implementation II – with Gaussian resampling

  45. Content • Introduction • Parametric warping • Barycentric coordinates • Interpolation • MP 6

  46. Warping in MP 6 • Warping ° For each triangle find the affine transform ° Apply it to the points inside ° Assign image value to the triangle points • Suggestions ° Barycentric coordinate ° Reverse mapping

  47. Preview of MP 6

Recommend


More recommend