Identification of Nonlinear LFR Systems starting from the Best Linear Approximation M. Schoukens and R. TΓ³th EE EE Con ontrol Systems tems
Nonlinear System Class 2
Outline Nonlinear System Class Initialization & Estimation Examples Conclusions 3
Outline Nonlinear System Class Initialization & Estimation Examples Conclusions 4
Nonlinear System Class 5
Nonlinear System Class 6
Nonlinear LFR vs Nonlinear SS Structured NL State-Space 7
Nonlinear LFR vs Nonlinear SS πΆ w = π½ππ¦ π· z = π½ ππ¦ πΈ zu = 0 ππ¦ 0 ππ£ πΈ yw = π½ππ§ π½ ππ£ Full NL State-Space 8
Uniqueness of the Representation 9
Uniqueness of the Representation All the problems of linear state-space representation 10
Uniqueness of the Representation All the problems of linear state-space representation Additional exchange of a linear gain between the nonlinearity and the linear dynamics 11
Outline Nonlinear System Class Initialization & Estimation Examples Conclusions 12
Initialization & Estimation Step 1: Estimate the Best Linear Approximation Frequency Domain Nonparametric BLA Initial estimate of: Rational Transfer Function State-Space Realization 13
Initialization & Estimation Step 1: Estimate the Best Linear Approximation For a good initial estimate, all the states should be βvisibleβ for the best linear approximation of the system 14
Initialization & Estimation Step 2: Nonlinear optimization of all the parameters together Initializing Nonlinearity, w and z Matrices Nonlinearity can be replaced in a 3 rd step 15
Initialization & Estimation Step 2: Nonlinear optimization of all the parameters together Nonlinear Optimization simulation error Levenberg-Marquardt Optimization 16
Outline Nonlinear System Class Initialization & Estimation Examples Conclusions 17
Silverbox Benchmark 18
Silverbox Benchmark Validation Estimation 19
Silverbox Benchmark n x = 2 3 rd degree polynomial nonlinearity 20
Silverbox Benchmark n x = 2 3 rd degree polynomial nonlinearity rms errors on estimation data linear model error: 6.62 mV NL-LFR error: 0.25 mV rms errors on validation data linear model error: 14.5 mV NL-LFR error: 0.38 mV 21
Silverbox Benchmark Validation Estimation 22
Silverbox Benchmark 23
Silverbox Benchmark 24
Silverbox Benchmark 25
Wiener-Hammerstein Benchmark 26
Wiener-Hammerstein Benchmark Estimation Validation 27
Wiener-Hammerstein Benchmark n x = 6 5 th degree polynomial nonlinearity Neural network 20 neurons β 1 hidden layer - tansig rms errors on estimation data linear model error: 55.8 mV NL-LFR error: 0.29 mV rms errors on validation data linear model error: 56.1 mV NL-LFR error: 0.30 mV 28
Wiener-Hammerstein Benchmark Estimation Validation 29
Wiener-Hammerstein Benchmark 30
Wiener-Hammerstein Benchmark 31
Wiener-Hammerstein Benchmark 32
Wiener-Hammerstein Benchmark 33
Outline Nonlinear System Class Initialization & Estimation Examples Conclusions 34
Conclusions Structured model directly from the data Linear initial model followed by NL optimization Good results on simple benchmark examples Future work: MIMO NL, MIMO LTI 35
Identification of Nonlinear LFR Systems starting from the Best Linear Approximation M. Schoukens and R. TΓ³th EE EE Con ontrol Systems tems
Recommend
More recommend