hp ps collimator studies
play

HP-PS Collimator Studies Androula Alekou Daniel Spitzbart - PowerPoint PPT Presentation

HP-PS Collimator Studies Androula Alekou Daniel Spitzbart androula.alekou@cern.ch daniel.spitzbart@cern.ch 13.11.2013 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Outline Code Additional secondary collimators at 90


  1. HP-PS Collimator Studies Androula Alekou Daniel Spitzbart androula.alekou@cern.ch daniel.spitzbart@cern.ch � 13.11.2013

  2. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Outline • Code • Additional secondary collimators at 90° • Influence of • primary/scraper thickness & material • halo size • smear size • Jaw opening � 2

  3. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 New automated code • Executable 
 + Mathematica • Takes into account the different loss types • Losses into the aperture • Exceeding threshold values of SixTrack • Outputfile with statistics for all runs • Option for saving the last part of the track for plotting • Faster, lesser storage used � 3

  4. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 New automated code • Example track � 4

  5. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Positions • Basically 6 Collimators (two stage system): • 2 Primaries/PC (scrapers) - horizontal / vertical • 4 Secondaries (absorbers) - 2 horizontal / 2 vertical • For Np=2.5, Ns=3.0 Np - aperture primary collimators, Ns - aperture of secondary collimators • HP 1 VP 1 HS 1 HS 2 VS 1 VS 2 opt. phase [°] 0 0 33.57 146.43 33.57 146.43 phase [°] 0 0 32.8 143.1 32.2 147.1 s-Pos [m] 315.57 315.67 331 386 329 364.4 � 5

  6. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Use of additional collimators at 90° • Np=2.5, Ns=3.0 • Better efficiency with additional collimators at 90° HS 90 VS 90 Inefficiency opt. phase [°] 90 90 Inefficiency 0.4 phase [°] 88.8 90.2 s-pos[m] 362.4 352.5 0.3 used properties: 2.5 sigma halo 0.016 sigma smear 0.2 graphite primaries tungsten secondaries Normal setup 0.1 Additional 90° Thickness @ m D 0.006 0.008 0.010 0.012 0.014 � 6

  7. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Inefficiency Graphite primaries Inefficiency 0.20 0.18 halo 2.5 H 0.16 halo 2.5 V halo 2.6 V 0.14 variation of primary thickness secondary material: tungsten 0.12 smear size 0.016 Primary thickness @ m D 0.006 0.008 0.010 0.012 0.014 0.016 Copper primaries Tungsten primaries Inefficiency Inefficiency 0.30 0.30 0.25 0.25 2.5 H 2.5 V 2.6 H 0.20 2.6 V 0.20 0.15 0.15 0.0010Primary thickness @ m D 0.0040Primary thickness @ m D 0.0002 0.0004 0.0006 0.0008 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 � 7

  8. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Cleaning speed Graphite primaries Cleaning speed 0.50 0.45 0.40 2.5 H 2.5 V 0.35 2.6 H 0.30 lower value - faster cleaning 0.25 Primary thickness @ m D 0.006 0.008 0.010 0.012 0.014 Copper primaries Tungsten primaries Cleaning speed Cleaning speed 0.8 0.7 0.4 0.6 2.5 H 2.5 V 0.5 0.3 2.6 H 2.6 V 0.4 0.3 0.2 0.2 0.1 0.1 0.0010Primary thickness @ m D 0.0040Primary thickness @ m D 0.0002 0.0004 0.0006 0.0008 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 � 8

  9. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles 3 - VP1 H halo, 6mm 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 graphite 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 calculated losses - checked trajectory -> hit aperture 20 sixtrack losses - threshold value (angle, radius) exceeded s - Pos @ m D 0 300 350 400 450 500 � 9

  10. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles 3 - VP1 H halo, 19mm 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 graphite 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 With thicker primary -> area of losses 20 moved towards begin of collimator area � losses more distributed between collimators s - Pos @ m D 0 300 350 400 450 500 � 10

  11. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 H halo, 5mm Absorbed particles, x x ê y ê r @ mm D HP1/VP1 VS1/HS1 VS90 HS90/VS2 HS2 100 50 420 s - Pos @ m D 0 320 340 360 380 400 - 50 - 100 � 11

  12. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 H halo, 5mm Lost particles, x x ê y ê r @ mm D HP1/VP1 VS1/HS1 VS90 HS90/VS2 HS2 100 50 420 s - Pos @ m D 0 320 340 360 380 400 - 50 - 100 � 12

  13. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 H halo, 19mm Absorbed particles, x x ê y ê r @ mm D HP1/VP1 VS1/HS1 VS90 HS90/VS2 HS2 100 50 thicker primary -> particles receive more kick 420 s - Pos @ m D 0 320 340 360 380 400 - 50 - 100 � 13

  14. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 H halo, 19mm Lost particles, x x ê y ê r @ mm D HP1/VP1 VS1/HS1 VS90 HS90/VS2 HS2 100 50 420 s - Pos @ m D 0 320 340 360 380 400 - 50 - 100 � 14

  15. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Conclusion of tracks • With thicker scrapers -> more kick • if we want a better impact parameter at the absorbers, this is needed � • Beam blows up at the quadrupole area at s=340m • in H plane, defocussing - focussing -> issue • in V plane, focussing - defocussing -> smaller problem � 15

  16. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles H halo, 0.2mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 tungsten 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 20 s - Pos @ m D 0 300 350 400 450 500 � 16

  17. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles H halo, 0.6mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 tungsten 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 20 Losses moved to towards front of collimator area also peak of losses at s=340 (QP area) as seen before s - Pos @ m D 0 300 350 400 450 500 � 17

  18. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles V halo 0.3mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 tungsten 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 20 s - Pos @ m D 0 300 350 400 450 500 � 18

  19. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles V halo 0.7mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 tungsten 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 Losses also moved to towards front of collimator area 20 no peak of losses at s=340 (QP area) -> V plane gets focussed first -> beamsize does not increase that much s - Pos @ m D 0 300 350 400 450 500 � 19

  20. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles H halo, 0.8mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 copper 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 20 s - Pos @ m D 0 300 350 400 450 500 � 20

  21. 1 - HP1 Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Collimator Statistics 2 - HS1 Number of absorbed particles H halo, 2mm 3 - VP1 600 4 - VS1 500 5 - HS2 400 6 - VS2 300 copper 7 - VS90 200 8 - HS90 100 HP1/VP1 VS90 HS2 0 Collimator Number Losses VS1/HS1 HS90/VS2 1 2 3 4 5 6 7 8 Number of lost particles 80 60 calculated losses sixtrack losses 40 Behavior quite similar to tungsten 20 s - Pos @ m D 0 300 350 400 450 500 � 21

  22. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Bigger jaw opening • Np=3.0, Ns=3.5 • Inefficiency increases, more losses 
 -> Horizontal beam size increases significantly at s=340m (QP) - can be also seen at other setup, but more important here • More studies to be done on that topic HP 1 VP 1 HS 1 HS 2 VS 1 VS 2 opt. phase [°] 0 0 31 149 31 149 phase [°] 0 0 30 152.4 29.1 147.5 s-Pos [m] 315.55 315.59 329.6 391.6 327 364.5 � 22

  23. Daniel Spitzbart / daniel.spitzbart@cern.ch / 13-11-2013 Halo size / smear size • If halo is exactly the size of the scrapers, a lot of particles never hit a collimator -> small efficiency Efficiency vs smear (halo=const=3) Efficiency 0.45 Efficiency vs smear (halo=const=2.5) Efficiency 0.4 0.47 Np=3.0 Data for more smear 0.465 points needed 0.35 Ns=3.5 0.46 Np=2.5 0.3 0.455 Ns=3.0 0.45 0.25 0.445 0.2 0.44 0.435 0.15 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.03 0.04 0.05 0.06 0.07 0.08 smear [ ] σ smear [ ] σ � 23

Recommend


More recommend