holographic flavor transport
play

Holographic Flavor Transport Andy OBannon Max Planck Institute for - PowerPoint PPT Presentation

Holographic Flavor Transport Andy OBannon Max Planck Institute for Physics Munich, Germany 15th European Workshop on String Theory Zrich, Switzerland Credits 0705.3870 A. Karch and A. OB. 0708.1994 A. OB. 0808.1115 A.


  1. Holographic Flavor Transport Andy O’Bannon Max Planck Institute for Physics Munich, Germany 15th European Workshop on String Theory Zürich, Switzerland

  2. Credits • 0705.3870 A. Karch and A. O’B. • 0708.1994 A. O’B. • 0808.1115 A. O’B. • 0812.3629 A. Karch, A. O’B., E. Thompson • 0908.2625 M. Ammon, H.T. Ngo, A. O’B.

  3. Outline: • I. Motivation • II. The System • III. The Conductivity • IV. Summary and Outlook

  4. I. Motivation REAL Strongly-coupled Systems Quantum Chromodynamics (QCD) Relativistic Heavy-Ion Collider (RHIC) T ≤ 2 × T c QCD at T c ≈ 170 MeV Strongly-coupled, Nearly-ideal FLUID

  5. Question: Can we compute TRANSPORT COEFFICIENTS for QCD at RHIC temperatures?

  6. Question: Can we compute TRANSPORT COEFFICIENTS for QCD at RHIC temperatures? Answer: NO.

  7. Philosophy: CHANGE the Question Question: Can we find ANY STRONGLY-COUPLED system for which we CAN compute TRANSPORT COEFFICIENTS?

  8. Answer: YES! N = 4 supersymmetric SU(N c ) Yang-Mills (SYM)

  9. Use Gauge-gravity Duality Shear Viscosity ⎯

  10. GOAL Compute a CONDUCTIVITY associated with “Quarks” or “Electrons” using Gauge-gravity Duality

  11. RESULT 2 N c 2 d 2 N f e 2 + 1 f ( m ) + σ = 16 π 2 T 2 e 2 + 1 Current nonlinear in E Pair Production Drude Conductivity

  12. Outline: • I. Motivation • II. The System • III. The Conductivity • IV. Summary and Outlook

  13. II. The System N = 4 supersymmetric SU(N c ) Yang-Mills (SYM) β = 0

  14. II. The System N = 4 supersymmetric SU(N c ) Yang-Mills (SYM) No Quarks!

  15. ADD N f N = 2 hypermultiplets ⎛ ⎞ β = + Ο N f ⎜ ⎟ ⎝ ⎠ N c “Probe Limit’’ << fixed

  16. Scales Temperature Mass J μ symmetry current Baryon Number Density

  17. Electric Field “Two-fluid” picture Lorentz force = Drag Force

  18. ⇒ ⇒ Steady-state??? Momentum Translation Invariance Conservation Net Charge Net Work + Constant Electric Field ENTIRE SYSTEM ACCELERATES FOREVER NO DISSIPATION!

  19. Probe Limit MIMICS Dissipation T µ ν = Ο ( N c 2 ) µ ν + Ο ( N f N c ) µ ν ∂ µ T µ ν = F νσ J σ ∂ t T tx = − E J t ∂ t T tt = E J x E = Ο (1) J µ = Ο ( N f N c )

  20. Holographic Dual Supergravity N = 4 SYM = = Finite temperature AdS-Schwarzschild N f probe D7-branes N f N = 2 hypers. = AdS 5 × S 3 m = Embedding J µ A µ =

  21. The Method ∫ S D 7 = − N f T D 7 d 8 x − det( g ab + (2 πα ') F ab ) • NOT Kubo formula! • Compute 1-pt. function DIRECTLY • Exploit Born-Infeld dynamics with E field • Valid for any Dp/Dq system

  22. Outline: • I. Motivation • II. The System • III. The Conductivity • IV. Summary and Outlook

  23. III. The Conductivity 2 N c 2 d 2 N f e 2 + 1 f ( m ) + σ = 16 π 2 T 2 e 2 + 1 E J t e = d = π π λ T 2 λ T 2 2 2

  24. III. The Conductivity 2 N c 2 d 2 N f e 2 + 1 f ( m ) + σ = 16 π 2 T 2 e 2 + 1 Depends on E! J x = σ ( E ) E J x = σ (0) E Linearize in E

  25. III. The Conductivity 2 N c 2 d 2 N f e 2 + 1 f ( m ) + σ = 16 π 2 T 2 e 2 + 1 J t = 0 σ ≠ 0 BUT Pair Production

  26. III. The Conductivity 2 N c 2 d 2 N f e 2 + 1 f ( m ) + σ = 16 π 2 T 2 e 2 + 1 m → ∞ f ( m ) → 0 ⇒ f ( m ) → 1 m → 0 ⇒

  27. III. The Conductivity 2 N c 2 d 2 N f e 2 + 1 f ( m ) + σ = 16 π 2 T 2 e 2 + 1 T tx ∝ J t NO momentum flow at zero density

  28. III. The Conductivity 2 N c 2 d 2 N f e 2 + 1 f ( m ) + σ = 16 π 2 T 2 e 2 + 1 Drude Conductivity m → ∞ Linearize in E σ (0) Take J t σ → d = π λ T 2 2

  29. Why m → ∞ ? Charges behave as semi-classical quasi-particles: dp dt = − µ p + E Separate calculation µ m = π λ T 2 2

  30. µ m = π λ T 2 2 J t J t σ → d = λ T 2 = π µ m 2 Drude Conductivity

  31. Outline: • I. Motivation • II. The System • III. The Conductivity • IV. Summary and Outlook

  32. IV. Summary + Outlook Probe Branes are Great! Computed CONDUCTIVITY for a “DISSIPATIVE” STRONGLY-COUPLED Non-Abelian Gauge Theory

  33. FUTURE DIRECTIONS MORE TRANSPORT COEFFICIENTS: Magnetic Fields Anomalous currents Condensed Matter Applications: Thermo-electric Transport Quantum Hall Effect Superfluidity Non-relativistic Theories

  34. Thank You.

Recommend


More recommend