physics of composite fermions in the fractional quantum
play

Physics of composite fermions in the fractional quantum Hall effect - PowerPoint PPT Presentation

Physics of composite fermions in the fractional quantum Hall effect Dam Thanh Son (University of Chicago) Solvay workshop on Quantum Simulation Brussels, 18-20 February 2019 Plan Fractional quantum Hall effect Theories of the composite


  1. Physics of composite fermions in the fractional quantum Hall effect Dam Thanh Son (University of Chicago) Solvay workshop on Quantum Simulation Brussels, 18-20 February 2019

  2. Plan • Fractional quantum Hall effect • Theories of the composite fermion: HLR and Dirac • Bosonized composite Fermi surface • Structure factor from composite fermions Dung Xuan Nguyen and DTS, to be published

  3. <latexit sha1_base64="7c9tmZ3xDlEUzN/apRhOzrHjscE=">ACH3icbZDLSgMxFIbPeK31VnXpJlhFQSgzbnQjFEVwWcFeoC1DJk3b2GRmSDLSYegj+BA+g+BKwZ07cdulD+He9ALa1h8CP985h3PyeyFnSt235qbX1hcWk6tpFfX1jc2M1vbJRVEktAiCXgKx5WlDOfFjXTnFZCSbHwOC17nctBvXxPpWKBf6vjkNYFbvmsyQjWBrmZwzu3i85RTbGWwG7S7fbQlSHvyQekNjNZO2cPRSaNc7YZP7389vAFBwM1+1RkAiQX1NOFaq6tihridYakY47aVrkaIhJh3colVjfSyoqifD/XQgSEN1Aykeb5GQ/p3IsFCqVh4plNg3VbTtQH8r1aNdPOsnjA/jDT1yWhRM+JIB2iQDmowSYnmsTGYSGZuRaSNJSbaZDixRM9k4kzncCsKZ3kHDvn3JhwLmCkFOzCHhyBA6eQh2soQBEIPMATvMCr9Wi9Wx/W56h1zhrP7MCErP4P4mWlnQ=</latexit> <latexit sha1_base64="JIBG5LXc4zqDI8VUWsiRYbLg62U=">ACH3icbZDLSgMxFIYz9VZbL1WXboJVFIQy40Y3QlElxXsBdoyZNJMG5vMDEmdBjmEXwIn0FwpSsX7sRtlz6Erk0voG39IfDznXM4J78TMCqVaQ6M1MLi0vJKejWTXVvf2MxtbVekHwpMythnvqg5SBJGPVJWVDFSCwRB3Gk6nQvh/VqjwhJfe9WRQFpctT2qEsxUhrZucM7uw/PYUPSNkd23O8n8EqT418SDUlk5/JmwRwJzhtrYvLF/a+n172u2TnPhstH4eceAozJGXdMgPVjJFQFDOSZBqhJAHCXdQmdW09xIlsxqMPJfBAkxZ0faGfp+CI/p2IEZcy4o7u5Eh15GxtCP+r1UPlnjVj6gWhIh4eL3JDBpUPh+nAFhUEKxZpg7Cg+laIO0grHSGU1scnuhMrNkE5k3lpGCZBetGh3MBxkqDXbAHjoAFTkERXIMSKAM7sEjeAYvxoPxZrwbH+PWlDGZ2QFTMgY/8SunFw=</latexit> <latexit sha1_base64="JIBG5LXc4zqDI8VUWsiRYbLg62U=">ACH3icbZDLSgMxFIYz9VZbL1WXboJVFIQy40Y3QlElxXsBdoyZNJMG5vMDEmdBjmEXwIn0FwpSsX7sRtlz6Erk0voG39IfDznXM4J78TMCqVaQ6M1MLi0vJKejWTXVvf2MxtbVekHwpMythnvqg5SBJGPVJWVDFSCwRB3Gk6nQvh/VqjwhJfe9WRQFpctT2qEsxUhrZucM7uw/PYUPSNkd23O8n8EqT418SDUlk5/JmwRwJzhtrYvLF/a+n172u2TnPhstH4eceAozJGXdMgPVjJFQFDOSZBqhJAHCXdQmdW09xIlsxqMPJfBAkxZ0faGfp+CI/p2IEZcy4o7u5Eh15GxtCP+r1UPlnjVj6gWhIh4eL3JDBpUPh+nAFhUEKxZpg7Cg+laIO0grHSGU1scnuhMrNkE5k3lpGCZBetGh3MBxkqDXbAHjoAFTkERXIMSKAM7sEjeAYvxoPxZrwbH+PWlDGZ2QFTMgY/8SunFw=</latexit> <latexit sha1_base64="46nCIeBu8mBtVM37B59pxwthgJE=">ACH3icbZDLSsNAFIYn9VbrLerSzWARBaEkbnQjFEVwWcFeoA1hMp20ozNJmJlIQ8gj+BA+g1tduxO3XfomTtqAtvWHgZ/vnM583sRo1JZ1tgoLS2vrK6V1ysbm1vbO+buXkuGscCkiUMWio6HJGE0IE1FSOdSBDEPUba3uN1Xm8/ESFpGNyrJCIOR4OA+hQjpZFrHj+4I3gJe5IOHLT0SiDN5qc/pIkJ4lrVq2aNRFcNHZhqBQwzW/e/0Qx5wECjMkZde2IuWkSCiKGckqvViSCOFHNCBdbQPEiXTSyYcyeKRJH/qh0C9QcEL/TqSIS5lwT3dypIZyvpbD/2rdWPkXTkqDKFYkwNFfsygCmGeDuxTQbBiTYIC6pvhXiIBMJKZzizxeOZzsSeT2DRtM5qtlWz76xq/apIpwOwCE4ATY4B3VwCxqgCTB4Bq/gDbwbL8aH8Wl8TVtLRjGzD2ZkjH8A7dSizg=</latexit> Quantum Hall Effect 2D electrons in a magnetic field j x = σ xx E x + σ xy E y ( p a + e A a ) 2 e 2 X X H = + 2 m | x a − x b | a h a,b i

  4. Integer quantum Hall effect • Electrons completely fill n Landau levels • gapped ground state • interaction can be treated perturbatively n=2 ∆ = B m n=1 degeneracy BA n=0 2 π

  5. Fractional QHE Electrons fill a fraction ν of a Landau level Interactions cannot be treated perturbatively FQHE exists in the limit of a single Landau level for example, the lowest Landau level

  6. Lowest Landau level limit ( p a + e A a ) 2 e 2 X X H = + 2 m | x a − x b | a h a,b i n= 1 B m n=0

  7. Lowest Landau level limit ( p a + e A a ) 2 e 2 X X H = + 2 m | x a − x b | a h a,b i m → 0 n= 1 B → ∞ m n=0

  8. Lowest Landau level limit ( p a + e A a ) 2 e 2 X X H = + 2 m | x a − x b | a h a,b i e 2 m → 0 X H = P LLL | x a − x b | a,b n= 1 B → ∞ m Projection to n=0 lowest Landau level

  9. Jain’s sequences ν = n + 1 n energy gap at ν = 2 n + 1 2 n + 1

  10. Composite fermion • Halperin-Lee-Read 1993: low-energy quasiparticle of half-filled Landau level: a “composite fermion” • “attaching 2 flux quanta to an electrons” • End result: an effective field theory of the composite fermion

  11. HLR field theory L = i † ( @ 0 − iA 0 + ia 0 ) − 1 2 m | ( @ i − iA i + ia i ) | 2 + 1 1 4 ⇡ ✏ µ νλ a µ @ ν a λ 2 b = r ⇥ a = 2 ⇥ 2 πψ † ψ “flux attachment” mean field: B e ff = B − b = B − 4 π n ν = 1 B e ff = 0 2 In half filled Landau level CFs form a Fermi surface away from half filling: CFs in a magnetic field

  12. Particle-hole symmetr • One problem with HLR theory: lack of particle- hole symmetry • Solving this problem: the Dirac composite fermion theory • Modification to the HLR theory: CF has a Berry phase of π around the Fermi disk • Composite fermion: particle-vortex dual of the electron

  13. Particle-vortex duality <latexit sha1_base64="J7/cSH25RYmW3QnHzDQ/79k8BY=">ACWnicbZDLixQxEMZr2te+1PFx8xJcBE9DWhYUYWHQi8cVnd2FyThUZ9I9YfNokmplaPp/8+i/IHjx6MWrHs30qLi7FgS+fF9VKvyK2uhInH8eZFeuXrt+Y2t7Z3fv5q3bwzt3j6NvglQT6Y0PpwVGZbRTE9Jk1GkdFNrCqJPi7OU6P3mvQtTevaVrWYWK6dLZGSNR8WogwoW7FQhpC96f4onPukAvjXRV0tSQMwX9gwqCrjBIFBlFHzUSF1uI7zja30KfskPWPshftgah1Nx/u8xHvi/0V+UWxP37+be8jABzNh1/FwsvGKkfSYIzTnNc0azGQlkZ1O6KJqkZ5hpWaJunQqjhrexYde5ScBSt9SMcR691/J1q0Ma5skTot0jJezNbm/7JpQ+WzWatd3ZBycrOobAwjz9Zg2UIHJcmskAZdPork0tMHCjhP7elsGsmlwhcFsdPRjkf5a8TnDFsagsewEN4Dk8hTG8giOYgIRP8B1+wM/BlyzLtrPdTWs2+D1zD85Vdv8XB0S5Zg=</latexit> <latexit sha1_base64="2RYOUgzS3/V3n5i6GtpRZdJn3Eo=">ACWnicbZBLaxRBFIVrOtE81TG6c1MYBFdDtQUITDEjcuImSQwNQ63a273FKlHU1UdGZre5K+5yV8IuMnSjVtdpqbHhDy8UHDqnHvrFl9WKukDYxedZGn50eOV1bX1jc0nT591n28dels5gQNhlXHGXhU0uAgyKDwuHQIOlN4lJ18mudHp+i8tOYgzEocaSiMzKWAEK1xN+O5A1HzCaoA9GtzrWDMml3GlTWFk8U0gHP2O+UKTKGQZ+B46SXlBWgN3xhd3Fyb0l3aPkr36h1eymbc3WY91ha9Eel9sd3/+GvzB782x93L/nEikqjCUKB98OUlWFUgwtSKGzWeWxBHECBQ6jNKDRj+qWRUPfRGdCc+viMYG27u2JGrT3M53FTg1h6u9nc/N/2bAK+YdRLU1ZBTRisSivFA2WzsHSiXQogpFAcLJ+FcqphA5hIj/zpZMz5k8IPBQHL7rpayXfolw+mRq+QVeU3ekpS8J3ymeyTARHknPwmf8jfzs8kSdaSjUVr0vk384LcqeTlFXrMuyg=</latexit> <latexit sha1_base64="2RYOUgzS3/V3n5i6GtpRZdJn3Eo=">ACWnicbZBLaxRBFIVrOtE81TG6c1MYBFdDtQUITDEjcuImSQwNQ63a273FKlHU1UdGZre5K+5yV8IuMnSjVtdpqbHhDy8UHDqnHvrFl9WKukDYxedZGn50eOV1bX1jc0nT591n28dels5gQNhlXHGXhU0uAgyKDwuHQIOlN4lJ18mudHp+i8tOYgzEocaSiMzKWAEK1xN+O5A1HzCaoA9GtzrWDMml3GlTWFk8U0gHP2O+UKTKGQZ+B46SXlBWgN3xhd3Fyb0l3aPkr36h1eymbc3WY91ha9Eel9sd3/+GvzB782x93L/nEikqjCUKB98OUlWFUgwtSKGzWeWxBHECBQ6jNKDRj+qWRUPfRGdCc+viMYG27u2JGrT3M53FTg1h6u9nc/N/2bAK+YdRLU1ZBTRisSivFA2WzsHSiXQogpFAcLJ+FcqphA5hIj/zpZMz5k8IPBQHL7rpayXfolw+mRq+QVeU3ekpS8J3ymeyTARHknPwmf8jfzs8kSdaSjUVr0vk384LcqeTlFXrMuyg=</latexit> <latexit sha1_base64="Fo2EQC2ZXIM150xtQC+nYbynE2Q=">ACWnicbZDLihNBFIYr7W0uXuJl56YwCK5CtQi6GQi6cTmimRlIxXC6crpTF2aqtNKaPr9fAXBjS/gVpdWOlGcGQ8U/PX/59QpvqI2OpIQXwfZtes3bt7a2z84vH3n7r3h/Qcn0TdB4VR548NZARGNdjglTQbP6oBgC4OnxfmbTX76CUPU3n2gdY1zC5XTpVZAyVoMC1kGUK1coiHg7s/ChaiOxLSeFcFXa0IQvCfuTgKoOygCDrqLmswFr4KPj2FvqUH/H+Uf6fSFr3S2GIzEWfG/Ir8sRmxXx4vhd7n0qrHoSBmIcZaLmuYtBNLKYHcgm4g1qHOocJakA4tx3vYsOv40OUte+pCOI967/060YGNc2yJ1WqBVvJxtzP9ls4bKV/NWu7ohdGq7qGwMJ83YPlSB1Rk1kmACjr9lasVJA6U8F/YUtgNkysEroqT5+NcjPN3YjSZ7OjscfsCXvGcvaSTdhbdsymTLEv7Af7yX4NvmVZtp8dbluzwW7mIbtQ2aPf85O3Nw=</latexit> original fermion composite fermion magnetic field density density magnetic field � µ ( @ µ − ia µ ) − 1 4 ⇡ ✏ µ νλ A µ @ ν a λ + 1 L = i ¯ 8 ⇡ ✏ µ νλ A µ @ ν A λ ρ = δ S = B − b δ A 0 4 π δ S ψγ 0 ψ i = B ! h ¯ = 0 � δ a 0 4 π

Recommend


More recommend