hi and metal absorption lines during the epoch of
play

HI AND METAL ABSORPTION LINES DURING THE EPOCH OF REIONIZATION LUZ - PowerPoint PPT Presentation

HI AND METAL ABSORPTION LINES DURING THE EPOCH OF REIONIZATION LUZ NGELA GARCA PEALOZA ASTRO COLLOQUIUM UNI MELBOURNE, OCTOBER 4TH, 2017 INTRODUCTION IMPRINTS ON SPECTRA OF HIGH REDSHIFT QUASARS Robertson et al. 2010 GP troughs at high


  1. HI AND METAL ABSORPTION LINES DURING THE EPOCH OF REIONIZATION LUZ ÁNGELA GARCÍA PEÑALOZA ASTRO COLLOQUIUM UNI MELBOURNE, OCTOBER 4TH, 2017

  2. INTRODUCTION IMPRINTS ON SPECTRA OF HIGH REDSHIFT QUASARS Robertson et al. 2010 GP troughs at high z in Metal absorption lines QSOs spectra Becker et al. 2015

  3. INTRODUCTION IMPRINTS ON SPECTRA OF HIGH REDSHIFT QUASARS Credit: Andrew Pontzen

  4. INTRODUCTION IONIZATION STATES Low ionization High ionization e.g. CII, SiII, OI, etc. e.g. CIV, SiIV, OVI, etc. Ionization potential energy ~ H Much larger ionization potential energy than H Expectation to find them in the CGM and regions They are detected in the IGM and shock heated nearby galaxies. gas. IGM CGM

  5. INTRODUCTION COLUMN DENSITY & ABSORPTION PATH Total survey path length. Number of atoms / cm^2 L

  6. INTRODUCTION SOME STATISTICS: COLUMN DENSITY DISTRIBUTION FUNCTION What is the distribution of the column density values for a given system ?

  7. INTRODUCTION SOME STATISTICS: COLUMN DENSITY DISTRIBUTION FUNCTION What is the distribution of the column density values for a given system ? Frequency of Y C absorbers per column N E U density bin. Q E R F Adapted from Max Pettini’s lectures

  8. INTRODUCTION SOME STATISTICS: COLUMN DENSITY DISTRIBUTION FUNCTION What is the distribution of the column density values for a given system ? Y C N E U Q E R First approximation: a single power law ! F Adapted from Max Pettini’s lectures

  9. INTRODUCTION METAL ABSORPTION LINES Some of these transitions occur redward of Ly α emission (1215 Å). There are many different absorptions the likelihood to be observed increases. The ionic ratios can give us additional information on the conditions of the gas independent from HI. An alternative proxy to study the ionization state of the IGM at high z.

  10. INTRODUCTION METAL ABSORPTION LINES - CIV Díaz et al. in prep. D’Odorico et al. 2013

  11. INTRODUCTION METAL ABSORPTION LINES - CII FREQUENCY OF ABSORBERS PER COLUMN DENSITY Finlator et al. 2016 Becker et al. 2011

  12. INTRODUCTION NUMERICAL APPROACH: * INCREASES THE SAMPLE OF ABSORBERS. * TRACES DIFFERENT PHASES OF THE GAS. * REACHES REDSHIFT THAT ARE NOT DETECTED YET WITH OBSERVATIONS. * SPATIAL DISTRIBUTION OF THE ABSORBERS WITH RESPECT TO OTHER OBJECTS.

  13. INTRODUCTION NUMERICAL APPROACH: 1. RUN HIGH-RESOLUTION SIMS P-GADGET3 (XXL) that includes self-consistent star formation and metal enrichment. Flat Λ -CDM model is assumed with cosmological parameters from Planck 2015. MDW / EDW: momentum / energy driven winds.

  14. INTRODUCTION NUMERICAL APPROACH: 1. RUN HIGH-RESOLUTION SIMS Initial conditions at z = 125 Feedback prescriptions Metal enrichment Molecular cooling

  15. INTRODUCTION NUMERICAL APPROACH: 2. ASSUME A UV BACKGROUND CONSISTENT AT HIGH REDSHIFT Uniform UV ionizing field: radiation background due to the CMB + ultraviolet/X-ray photons from quasars and galaxies with saw-tooth attenuation (Haardt & Madau 2012). − 15 z = 8 z = 6 z = 4 − 20 log J ν (erg/s/cm 2 /Hz/sr) − 25 − 30 − 35 10 − 4 10 − 3 10 − 2 10 − 1 10 0 10 1 10 2 10 3 10 4 10 5 10 6 10 7 E (Ryd)

  16. INTRODUCTION NUMERICAL APPROACH: 2. ASSUME A UV BACKGROUND CONSISTENT AT HIGH REDSHIFT Uniform UV ionizing field: radiation background due to the CMB + ultraviolet/X-ray photons from quasars and galaxies with saw-tooth attenuation (Haardt & Madau 2012). Grand sum of ionizing flux from quasars and galaxies

  17. INTRODUCTION NUMERICAL APPROACH: 3. METAL IONS COMPUTED WITH CLOUDY PHOTO-IONIZATION CODE V8.1 FOR OPTICALLY THIN GAS IN IONIZATION EQUILIBRIUM (FERLAND 2013).

  18. INTRODUCTION NUMERICAL APPROACH: 4. IMPLEMENT A PRESCRIPTION HI SELF-SHIELDING TO ACCURATELY DESCRIBE THE REGIONS INSIDE THE MASSIVE DARK MATTER HALOS (RAHMATI ET AL. 2013)

  19. INTRODUCTION NUMERICAL APPROACH: 5. GENERATE 1000 RANDOM LINES OF SIGHT INSIDE THE BOX.

  20. INTRODUCTION NUMERICAL APPROACH: 5. GENERATE 1000 RANDOM LINES OF SIGHT INSIDE THE BOX.

  21. INTRODUCTION NUMERICAL APPROACH: 6. RECOVER THE SPECTRA OF EACH ION IN EACH LINE OF SIGHT (C II, C IV, S I II, SI IV, O I).

  22. INTRODUCTION NUMERICAL APPROACH: 7. CONVOLVE SYNTHETIC SPECTRA WITH GAUSSIAN NOISE.

  23. INTRODUCTION NUMERICAL APPROACH: 8. USE VOIGT PROFILES TO FIT THE ABSORPTION FEATURES AUTOMATICALLY WITH THE CODE VPFIT 10.2.

  24. INTRODUCTION NUMERICAL APPROACH: 8. USE VOIGT PROFILES TO FIT THE ABSORPTION FEATURES AUTOMATICALLY WITH THE CODE VPFIT 10.2.

  25. RESULTS STAR FORMATION RATE DENSITY 0.8 dex Madau et al. 2014

  26. RESULTS STAR FORMATION RATE DENSITY Absolute magnitude M UV = -17 limit 0 log SFRD (M � yr � 1 Mpc � 3 ) � 1 � 2 Obs. Bouwens+ 2015 Obs. Bouwens+ 2015 (dust corr) Obs. Cucciati+ 2012 Madau et al. 2014 Obs. Hildebrandt and Erben 2010 Obs. Bouwens+ 2009 � 3 Obs. Ouchi+ 2004 Obs. Steidel+ 1999 Ch 18 512 MDW Ch 18 512 MDW mol Ch 18 512 EDW Ch 18 512 EDW mol � 4 Ch 12 512 MDW mol Ch 25 512 MDW mol 4 5 6 7 8 z García et al. 2017a

  27. RESULTS CHEMICAL ENRICHMENT Mean metallicity of the Universe: y: amount of heavy metals 0.8 dex model SFR IMF stellar yields Díaz et al. in prep

  28. RESULTS CHEMICAL ENRICHMENT * Difference between EDW / MDW feedback models. * Consistent with observational constraints at high z. 10 − 4 Ch 18 512 MDW Ch 18 512 MDW Ch 18 512 MDW mol Ch 18 512 MDW mol Ch 18 512 EDW Ch 18 512 EDW 10 4 Ch 18 512 EDW mol Ch 18 512 EDW mol Ch 12 512 MDW mol Ch 12 512 MDW mol Ch 25 512 MDW mol 10 − 5 Ch 25 512 MDW mol Ω C (10 − 9 ) Ω Si 10 3 10 − 6 10 − 7 10 2 4 5 6 7 8 4 5 6 7 8 z z

  29. IGM AND MULTIPHASE GAS MULTIPHASE GAS Shock heated gas Star-forming region Voids IGM CGM

  30. IGM AND MULTIPHASE GAS MULTIPHASE GAS - METALLICITY

  31. RESULTS CIV - CDDF CALIBRATION − 11 Z ~ 5.6 − 12 − 13 − 14 log f C IV − 15 Obs D’Odorico 5.3 < z < 6.2 − 16 f(N)= BN − a f(N)= f ( N o )( N/N o ) − a − 17 Ch 18 512 MDW Ch 18 512 MDW mol Ch 18 512 EDW − 18 Ch 18 512 EDW mol Ch 12 512 MDW mol Ch 25 512 MDW mol Finlator et al. 2016 − 19 12 . 5 13 . 0 13 . 5 14 . 0 14 . 5 15 . 0 log N C IV (cm − 2 ) García et al. 2017a In most works, strong CIV absorbers are quite rare!

  32. RESULTS CIV - CDDF AT Z ~ 6.4 − 11 Obs Bosman+ 17, 6.2 < z < 7.0 Ch 18 512 MDW Ch 18 512 MDW mol − 12 Ch 18 512 EDW Ch 18 512 EDW mol Ch 12 512 MDW mol Ch 25 512 MDW mol − 13 log f C IV − 14 − 15 − 16 − 17 12 . 5 13 . 0 13 . 5 14 . 0 14 . 5 15 . 0 log N C IV (cm − 2 )

  33. RESULTS CIV COSMOLOGICAL MASS DENSITY 10 2 10 1 Ω C IV (10 − 9 ) Obs. Codoreanu+ in prep. Obs. Diaz+ in prep. Obs. Ryan-Weber+ 09, Pettini+ 03 10 0 Obs. Bosman+ 17 Obs. D’Odorico+ 13 Obs. Simcoe+ 11 Obs. Boksenberg and Sargent 15 Obs. Songaila 01,05 Ch 18 512 MDW Ch 18 512 MDW mol Ch 18 512 EDW Ch 18 512 EDW mol 10 − 1 Ch 12 512 MDW mol Ch 25 512 MDW mol Adapted from García et al. 2017a 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 6 . 5 7 . 0 7 . 5 8 . 0 with new data z

  34. RESULTS C STATES COSMOLOGICAL MASS DENSITY Ch 18 512 MDW 10 3 Limits CII Becker+ 06 Obs. CIV Diaz+ in prep. CII CIII 10 2 CIV Ω (10 − 9 ) 10 1 10 0 Finlator et al. 2015 10 − 1 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 6 . 5 7 . 0 7 . 5 8 . 0 z

  35. RESULTS LAE - CIV absorption pair 212 pkpc = 1360 ckpc IGM / CGM metals wind LAE Díaz et al. 2015 M UV = -20.7 (detected LAE) LAE: Lyman alpha emitter

  36. RESULTS LAE - CIV absorption pair García et al. 2017b In our simulations, the enrichment of the region cannot be caused by LAEs at a distance of ~1360 ckpc/h at z = 5.6

  37. RESULTS LAE - CIV absorption pair 500 1 . 0 0 . 8 flux CIV A LAE 0 . 6 log N CIV (cm -2 )= 14.31 ~ 1296 ckpc/h 0 . 4 y (ckpc/h) Dwarf galaxy d 0 . 2 ~ 119 ckpc/h 0 0 . 0 CIV abs 0 500 1000 1500 2000 2500 vel (km/s) 400 y (ckpc/h) B − 500 − 1000 0 1000 200 x (ckpc/h) García et al. 2017b 0 − 200 1000 Enrichment is caused by undetected x (ckpc/h) C 0 galaxies in the field… the same type of − 1000 galaxies that complete the budget of − 2000 ionising photons in the EoR. 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 z (ckpc/h)

  38. RESULTS LAE - CIV absorption pair 500 ~ 1296 ckpc/h LAE ~ 283 ckpc/h y (ckpc/h) Dwarf galaxy d ~ 119 ckpc/h 0 CIV abs − 500 − 1000 0 1000 x (ckpc/h) García et al. 2017b Detections with HST proved that there is an undetected galaxy with SFR = 2 M o / yr in the field, consistent Cai et al. 2017 with our prediction for a dwarf galaxy!!

  39. RESULTS HI cosmological mass density 5 Obs. Crighton+ 15 Obs. Prochaska+ 05,09 Obs. Zafar+ 13 Ch 18 512 MDW 4 Ch 18 512 MDW mol Ch 18 512 EDW Ch 18 512 EDW mol Ch 12 512 MDW mol Ch 25 512 MDW mol Ω HI (10 3 ) 3 Neutral pockets of H 2 1 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 z Tescari et al. 2009 García et al. 2017a

  40. RESULTS HI cosmological mass density 5 Obs. published after Obs. Ω DLA (Bird+ 2017) our models predictions Ch 18 512 MDW Ch 18 512 MDW mol Ch 18 512 EDW 4 Ch 18 512 EDW mol Ch 12 512 MDW mol Ω HI , Ω DLA (10 − 3 ) Ch 25 512 MDW mol 3 Neutral pockets of H 2 1 3 . 5 4 . 0 4 . 5 5 . 0 5 . 5 6 . 0 z Tescari et al. 2009 García et al. 2017a

  41. RESULTS SiIV statistics Codoreanu et al. in prep.

Recommend


More recommend