hh in gluon gluon fusion
play

HH in gluon-gluon fusion Biggest cross section Only loop induced - PowerPoint PPT Presentation

HH production: NLO+PS and top-quark mass effects in gluon fusion Eleni Vryonidou Universit catholique de Louvain In collaboration with: F. Maltoni and M. Zaro Phys.Lett. B732 (2014) 142-149 and JHEP 1411 (2014) 079 HPPC2015 Mainz 29/4/15


  1. HH production: NLO+PS and top-quark mass effects in gluon fusion Eleni Vryonidou Université catholique de Louvain In collaboration with: F. Maltoni and M. Zaro Phys.Lett. B732 (2014) 142-149 and JHEP 1411 (2014) 079 HPPC2015 Mainz 29/4/15

  2. HH in gluon-gluon fusion Biggest cross section Only loop induced channel ❖ Exact NLO computation requires: ✔ ❖ Real emissions: HHj one loop (doable) ✗ ❖ Virtual corrections: Include 2-loop amplitudes Not available (yet) Use a low energy theory Effective Lagrangian Eleni Vryonidou 2

  3. HEFT approach in HH production How well does the HEFT work for HH at LO? MadGraph5_aMC@NLO Dawson, Furlan, Lewis 1206.6663 HEFT fails to reproduce the 10-20% difference for the total cross section differential distributions, also for additional jets Mass ¡effects ¡are ¡important ¡and ¡need ¡to ¡be ¡included Eleni Vryonidou 3

  4. NLO approximations for HH: A step further Going beyond the Hpair approximation Using all available information: 1) Exact real emission matrix elements 2) Virtual corrections in the HEFT-rescaled by the exact born Within the MG5_aMC@NLO framework: • HEFT UFO model allows us to generate events at NLO • MadLoop can perform the computation of the one-loop matrix elements: born and real-emission + Eleni Vryonidou 4

  5. A reweighting approach for HH • NLO HEFT event generation: MC@NLO method d σ ( H ) = d φ n +1 ( R − C MC ) , B + V + C int � d φ n �� � d σ ( S ) = d φ n +1 + ( C MC − C ) d φ n +1 • Different weights stored internally: virtual, real and counter terms • Reweight on an event-by-event basis using the results of the exact loop matrix elements. Schematically: ighting each contri o B , V , C ( int ) , C MC ✕ o B F T / B HEF T , w C ✕ to R io R F T / R HEF T . W • Fully differential reweighting • Setup allows implementation of a Born (Hpair-type) reweighting if all weights are reweighted by o B F T / B HEF T , w Eleni Vryonidou 5

  6. Results: Total cross section for HH NLO FT approx Born-improved HEFT Comparing: HEFT • NLO FT approx (exact real- approximate virtuals) • Born-improved HEFT • NLO HEFT Reduction of the cross section by about 10% compared to the Born-improved results at 14 TeV Results ¡at ¡14 ¡TeV ¡[fb] 2%: Use of Complex- 23.2 +32 . 3+2 . 0% FT, Γ t = 0 GeV − 22 . 9 − 2 . 3% Mass-Scheme LO 22.7 +32 . 3+2 . 0% FT, Γ t = 1 . 5 GeV Finite top width − 22 . 9 − 2 . 3% 32.9 +18 . 1+2 . 9% HEFT − 15 . 5 − 3 . 7% 38.5 +18 . 4+2 . 0% NLO HEFT Born-improved 10% : Exact real − 15 . 1 − 2 . 4% emission amplitudes 34.3 +15 . 0+1 . 5% FT approx (virtuals: Born-rescaled HEFT ) − 13 . 4 − 2 . 4% Eleni Vryonidou 6

  7. Differential distributions for the LHC HH production at the LHC14 LO FT Including ¡the ¡exact ¡ 10 -2 NLO HEFT Born-improved matrix ¡elements ¡ NLO FT approx has ¡a ¡bigger ¡effect ¡ in ¡the ¡region ¡of ¡ hard ¡parton ¡ 10 -3 d σ /bin[pb] emission: ¡tail ¡of ¡ MadGraph5_aMC@NLO pT(HH) ¡distribution ¡ Exact ¡matrix ¡ 10 -4 elements ¡give ¡a ¡ better ¡description MSTW2008(N)LO pdf µ R = µ F =m HH /2 NLO FT approx +PY8 PDF. unc scale unc LO FT+PY8 2 1 0 50 100 150 200 250 300 350 400 p T (HH) [GeV] Eleni Vryonidou 7

  8. Are our results robust? One might argue that we are spoiling possible cancellations by including the exact top mass dependence in the real corrections but not in the virtual corrections … Let’s look at single Higgs production: Comparison of • Born-rescaled HEFT results , σ NLO HEF T × σ LO F T / σ LO HEF T • Available exact results 1.15 Harlander, arxiv:0311.005 NLO, LHC 1.125 1.1 Michael ¡Spira: ¡“Below ¡and ¡at ¡the ¡2m t ¡ 1.075 threshold ¡a ¡cancellation ¡is ¡happening ¡ 1.05 between ¡the ¡top ¡mass ¡effects ¡in ¡the ¡real ¡and ¡ 1.025 virtual ¡corrections ¡and ¡the ¡Born-­‑rescaled ¡ 1 HEFT ¡result ¡is ¡very ¡close ¡to ¡the ¡exact ¡one” σ ∞ t / σ t 0.975 σ ∞ tb / σ tb 0.95 Standard Model 0.925 HIGLU 0.9 100 200 300 400 500 600 700 800 900 1000 M H [GeV] Eleni Vryonidou 8

  9. The single Higgs case Same procedure applied to single Higgs production for different Higgs masses: Comparison to the exact result: - NLO FT approx H production at the LHC14 1.14 NLO HEFT Born-improved 1.12 Ratio over the exact result Hpair approach 1.1 1.08 1.06 Our approach 1.04 1.02 1 m(H)~m(HH) 0.98 0.96 . 0.94 . 100 200 300 400 500 600 700 800 m ( H ) [GeV] The bulk of the HH cross section lies well above the 2m t threshold In this region the Born-rescaled results overestimate the exact result for single Higgs: 7-8% at 500 GeV Eleni Vryonidou 9

  10. Approximate virtual corrections Varying the virtual corrections for HH a) b) • Part ¡(triangle) ¡of ¡the ¡virtual ¡corrections ¡is ¡known ¡from ¡single ¡Higgs ¡NLO ¡corrections ¡ • Corrections ¡known ¡as ¡a ¡function ¡of ¡the ¡Higgs ¡and ¡top ¡masses Assume these corrections factorise in the same way for the box and triangle i.e. virt = σ H σ HH virt × σ HH Born σ H Born NLO ¡results ¡at ¡14 ¡TeV ¡[fb] 15 1 2 4% 34.3 +15 . 0+1 . 5% FT approx (virtuals: Born-rescaled HEFT ) − 13 . 4 − 2 . 4% 2% effect 35.0 +15 . 7+2 . 0% FT ′ approx (virtuals: estimated from single Higgs in FT) − 13 . 7 − 2 . 4% Conclusion: Results are stable under the variation of estimates for the (unknown) finite part of the virtual corrections Eleni Vryonidou 10

  11. Summary-Outlook • New Monte Carlo implementation of the gluon fusion process at approximate NLO, provided within MG5_aMC@NLO • Results are obtained by employing the exact matrix elements for the real emission amplitudes and Born-rescaled HEFT virtual corrections • Provides a better description of the high p T kinematics and a total cross section different by -10% from the Born-rescaled result • Comparison to other NLO approximations (Jonathan’s talk) Associated uncertainty due to missing top mass effects ~10% Eleni Vryonidou 11

  12. Thanks for your attention...

Recommend


More recommend