health effects
play

Health Effects Lecture 11: Noise Part 5 (13.05.2020) Mark Brink - PowerPoint PPT Presentation

[701-0662-00 L] Environmental Impacts, Threshold Levels and Health Effects Lecture 11: Noise Part 5 (13.05.2020) Mark Brink ETH Zrich D-USYS Homepage: http://www.noise.ethz.ch/ei/ D- USYS M. Brink Environmental Impacts - Noise Part


  1. [701-0662-00 L] Environmental Impacts, Threshold Levels and Health Effects Lecture 11: Noise Part 5 (13.05.2020) Mark Brink ETH Zürich D-USYS Homepage: http://www.noise.ethz.ch/ei/ D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 1

  2. Topics covered in the previous lecture • Noise annoyance • Aircraft noise annoyance • Noise contours • "Change effect" • Physiological activations due to noise • Stress model of non-auditory effects of noise • Noise coping • Pathogenetic pathways • Sleep disturbances due to noise (introduction) D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 2

  3. Student questions from previous lecture • Question 1: When noise is such a negative factor for sleep and health related effects, why is there the concept of white noise, where people need some kind of noise to sleep better? • White noise can help to mask environmental sounds (sound events) that could lead to sleep disturbances, via increasing acoustical arousal threshold. • Auditory masking occurs when the perception of one sound is affected by the presence of another sound. D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 3

  4. Masking with narrowband noise Narrowband noise 420-620 Hz Masked tone (510 Hz) D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 4

  5. Frequency masking 100 1kHz 100dB Hearing threshold [dB] 80 250Hz, 60dB 4kHz, 60dB 60 80 40 60 40 20 20 0 Hearing threshold at calmness 20 40 60 80 200 400 800 2k 4k 6k8k 20k 100 1k 10k Frequency [Hz] 1: frequencies close to each other 2: frequencies wide apart low frequency masking tone high frequency masking tone D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 5

  6. Student questions from previous lecture • Question 2: White noise is I believe a synchronisation (constant/static form) of noise & thus brain sound waves. Therefore it can help construct & maintain a constant acoustic environment (hear: no interruptions). • Some evidence for effects of white noise on brain functions (e.g. cognitive performance, memory) • White or pink noise may also influence the brain electrical activity and improve sleep quality by reducing sleep onset latency and promoting slow wave sleep (SWS). Exact mechanisms are not fully elucidated. First results point to a role of the dopaminergic system. D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 6

  7. Lecture overview for today ► Sleep disturbances (cont'd): study types and methods ► Polysomnography (PSG) ► Actimetry / Actigraphy / Seismosomnography ► Sleep disturbances: Awakening probability ► Countermeasures / noise abatement in the night ► Long-term health effects of noise (Part 1) ► Cardiovascular effects D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 7

  8. Research methods: Polysomnography (PSG) EEG → Sleep stages EOG (Eye movements) → REM sleep EMG (Muscle tone) ECG (Heart rate) Breathing activity • Allows differentiation of sleep stages → wake | sleep (Detection of awakening reactions) • very sensitive, detects even very tiny reactions • Complex, expensive • Not always pleasant for test persons D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 8

  9. Research methods: Relevant PSG signal characteristics EEG EOG EMG ECG Arousal Awakening 30 sec D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 9

  10. Research methods: Actimetry / Actigraphy ActiWatch (tm) Basic idea • Increased movements are a sign of disturbed sleep Disadvantage • Less suitable for event- related analyses D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 10

  11. Research methods: Seismosomnography (SSG) Measures Actimetry, Heart rate, Respiration rate with only one type of transducer (here: force sensor) Changing force distribution because of: • Movements of arms/legs • Recoil movement of the body at each heartbeat (cardioballistic effect) • Lifting and lowering of the thorax per inhalation/ex- halation cycle D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 11

  12. SSG recorded data End of recording Start of recording 80000 Center of gravity Bett- 60000 across/along Schwerpunkt 40000 (quer/längs) 20000 10 8 6 Actigraphy Time of gone to bed Time of rise 4 Aktimetrie 2 0 80 60 Heart rate 40 Herzrate Breathing rate 20 Atemrate 0 Simulated aircraft Simulierte Flüge noise events (LAS,max 50 dB) SPL 70 Schallpegel 60 outdoor 50 Aussen 40 indoor Innen 30 20 0 100 200 300 400 500 600 D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 12

  13. Awakening reactions (AWR) Exposure-effect relationships in the sleep laboratory Aircraft Road traffic Railways no noise... Awakening probability Awakening probability according to EEG! L AS,max of noise event Source: Basner et al., 2011 D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 13

  14. Awakening probability increases with time asleep (Logistic regression model) 0.16 0.14 Probability of additional AWR 540 0.12 480 P AWR,zusätzlich Minutes after sleep onset 420 0.1 360 300 0.08 240 3.5 dB / hour 180 0.06 120 0.04 60 0 0.02 0 25 30 35 40 45 50 55 60 65 70 75 L max [dB(A)] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 14

  15. Exposure-effect relationships for awakening probability Church bell noise / field study 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] Brink et al., Env Int, 2011 D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 15

  16. 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 16

  17. 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 17

  18. 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 18

  19. 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 19

  20. 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 20

  21. 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 21

  22. 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 22

  23. 50% 45% Aufwachwahrscheinlichkeit 40% 35% 30% P additional 25% 20% 15% 10% 5% 0% 20 25 30 35 40 45 50 55 60 65 70 L AF,max innen [dB] L AF,max indoors [dB] D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 23

  24. Number of noise events leading to one additional AWR (Aircraft noise) L Aeq,8h ca. 46 dB (at the ear) L AS,max of event at the ear L Aeq,8h ca. 22 dB (at the ear) Number of noise events leading to one (1) additional AWR Source: Basner et al., 2005 D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 24

  25. Practical application: Local prevalence of noise- induced awakenings N 1 AWR per night due to aircraft noise 0.5 AWR >= 1 0 AWR AWR D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 25

  26. Practical application: weighting with population density 0P/ha > 100 P/ha D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 26

  27. Practical application: Counting the number of awakening reactions Bülach: 3552 AWR Dielsdorf: 419 AWR 0 AWR > 80 AWR D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 27

  28. Effect of slope of rise of an aircraft noise event on motility (measured with SSG) Landing (3.3 dB/s) Take-off (1.1 dB/s) Bodily activity Sound level [dB(A)] 70 70 Schalldruckpegel [dB(A)] 60 60 50 50 40 40 30 30 20 20 10 10 4 4 0 0 3 3 Bewegungsaktivität 2 2 1 1 0 0 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 Time [s] after noise event onset Zeit [s] nach Beginn des Fluggeräusches Time [s] after noise event onset Zeit [s] nach Beginn des Fluggeräusches Brink et al., Somnologie (2008) D- USYS • M. Brink • Environmental Impacts - Noise Part 5 Slide 28

Recommend


More recommend