harris recurrence for strongly degenerate stochastic
play

Harris recurrence for strongly degenerate stochastic systems, with - PowerPoint PPT Presentation

papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references Harris recurrence for strongly degenerate stochastic systems, with application to stochastic Hodgkin-Huxley models


  1. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references Harris recurrence for strongly degenerate stochastic systems, with application to stochastic Hodgkin-Huxley models Reinhard H¨ opfner, Universit¨ at Mainz and Eva L¨ ocherbach, Universit´ e Cergy-Pontoise and Michele Thieullen, Universit´ e Paris VI RDS Bielefeld 12.12.14

  2. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references talk based on Michele Thieullen, Eva L¨ ocherbach, Reinhard H¨ opfner Strongly degenerate time inhomogeneous SDEs: densities and support properties. Application to a Hodgkin-Huxley system with periodic input. arXiv:1410.0341 Ergodicity for a stochastic Hodgkin-Huxley model driven by Ornstein-Uhlenbeck type input. arXiv:1311.3458v3 , AIHP A general scheme for ergodicity in strongly degenerate stochastic systems. Ongoing work.

  3. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references I: strongly degenerate stochastic systems – main result for m < d , consider d -dim diffusion driven by m -dim Brownian motion dX t = b ( t , X t ) dt + σ ( X t ) dW t , t ≥ 0 with coefficients     b 1 ( t , x ) σ 1 , 1 ( x ) σ 1 , m ( x ) . . .  .   . .  . . .     b ( t , x ) = .  , σ ( x ) = . .    σ d , 1 ( x ) b d ( t , x ) σ d , m ( x ) . . . for t ≥ 0, x ∈ E : state space ( E , E ) Borel subset of R d (with some properties) coefficient smooth, but neither bounded nor globally Lipschitz assume: unique strong solution exists, has infinite life time in int( E ) aim: ask for Harris properties of ( X t ) t ≥ 0 (non homogeneous in time) when drift is time-periodic and when some Lyapunov function is at hand:

  4. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references assumption A write P s , t ( x , dy ) (0 ≤ s < t < ∞ , x , y ∈ E ) for the semigroup of ( X t ) t ≥ 0 assumption A: i) the drift is T -periodic in the time argument b ( t , x ) = b ( i T ( t ) , x ) , i T ( t ) := t modulo T ii) we have a Lyapunov function: � V : E → [1 , ∞ ) E -measurable, and for some compact K : P 0 , T V bounded on K , P 0 , T V ≤ V − ε on E \ K T -periodicity of the drift implies that the semigroup is T -periodic P s , t ( x , dy ) = P s + kT , t + kT ( x , dy ) , k ∈ N 0 , x , y ∈ E thus the T -skeleton chain ( X kT ) k ∈ N 0 is a time homogeneous Markov chain Lyapunov condition grants that skeleton chain will visit K infinitely often

  5. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references assumption B alternative under assumption A: define torus T := [0 , T ], define E := T × E , add time as 0-component to the process X : X t := ( i T ( t ) , X t ) , t ≥ s , X 0 = ( s , x ) X is time homogeneous, (1+ d )-dim, state space ( E , E ) assumption B: i) for some U ⊂ R d open and containing E , coefficients ( t , x ) → b i ( t , x ) , x → σ i , j ( x ) , 1 ≤ i ≤ d , 1 ≤ j ≤ m of SDE are real analytic functions on T := T × U ii) there exists some x ∗ ∈ int( E ) with the following two properties: x ∗ is of full weak Hoermander dimension (cf. section IV) x ∗ is attainable in a sense of deterministic control (cf. next slide)

  6. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references def 1 ’attainable in a sense of deterministic control’: in view of control arguments, put SDE in Stratonovich form dX t = � b ( t , X t ) dt + σ ( X t ) ◦ dW t with Stratonovich drift m d � � σ j ,ℓ ( x ) ∂σ i ,ℓ b i ( t , x ) = b i ( t , x ) − 1 � ∂ x j ( x ) , 1 ≤ i ≤ d 2 ℓ =1 j =1 definition 1: call x ∗ ∈ int( E ) attainable in a sense of deterministic control if for every starting point x ∈ E we can find some function ˙ h : [0 , ∞ ) → R m depending on x and x ∗ , all components ˙ h ℓ ( · ) in L 2 loc , 1 ≤ ℓ ≤ m , which drives a deterministic control system ϕ = ϕ h , x , x ∗ d ϕ t = � b ( t , ϕ t ) dt + σ ( ϕ t ) ˙ solution to h ( t ) dt from x = ϕ 0 towards x ∗ = lim t →∞ ϕ t (control theorem: Strook and Varadhan 1972, see Millet and Sanz-Sole 1994)

  7. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references thm 1 + cor 1 theorem 1: under assumptions A + B: i) ( d -dim:) the T -skeleton ( X kT ) k ∈ N 0 is a positive Harris recurrent chain with invariant probability µ on ( E , E ) ii) (1+ d -dim:) the process X := ( i T ( t ) , X t ) t ≥ 0 is positive Harris recurrent with invariant probability µ on ( E , E ) and both invariant measures are related by � T 1 µ = ds ( ǫ s ⊗ µ P 0 , s ) on E = T × E T 0 corollary 1: (SLLN) for functions G : E → R in L 1 ( µ ) and F : E → R in L 1 ( µ ) � � n 1 G ( X kT ) − → µ ( dy ) G ( y ) n k =1 � t � T � 1 1 F ( i T ( s ) , X s ) Λ( ds ) − → Λ( ds ) ( µ P 0 , s )( dy ) F ( s , y ) t T 0 0 E Q x -almost surely as n → ∞ or t → ∞ , for every starting point x ∈ E on the torus T , we may consider many finite measures Λ( ds ), not only uniform

  8. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references II: example, a stochastic Hodgkin-Huxley system V membran potential in a neuron, n , m , h gating variables, ξ dendritic input autonomous diffusion ( ξ t ) t ≥ 0 modelling dendritic input, analytic coefficients, carrying T -periodic deterministic signal t → S ( t ) encoded in its semigroup describe temporal dynamics of the neuron by a 5d stochastic system ( ξ HH): t − → ( V t , n t , m t , h t , ξ t ) =: X t 5d SDE driven by 1d BM with state space E = R × [0 , 1] 3 × R defined by dV t = d ξ t − F ( V t , n t , m t , h t ) dt dn t = [ α n ( V t )(1 − n t ) − β n ( V t ) n t ] dt dm t = [ α m ( V t )(1 − m t ) − β m ( V t ) m t ] dt dh t = [ α h ( V t )(1 − h t ) − β h ( V t ) h t ] dt d ξ t = ( S ( t ) − ξ t ) dt + dW t specific power series F ( V , n , m , h ), strictly positive analytic fcts α j ( V ), β j ( V ), j = n , m , h , see Izhikevich (2007), or Hodgkin and Huxley (1951)

  9. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references figure 1 trajectories may look like this (except that simulation here uses CIR type input) stochastic HH with periodic signal: voltage v(t) function of t ; black dotted line indicating periodicity of the semigroup 100 [mV] 60 20 0 0 100 200 300 400 [ms] stochastic HH with periodic signal: gating variables n(t) (violet), m(t) (blue), h(t) (grey) functions of t 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 [ms] stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion) 10 5 [mV] 0 −10 0 100 200 300 400 the following parameters werde used for signal and CIR : period = 28 , amplitude = 9 , sigma = 0.5 , tau = 0.75 , K = 30

  10. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references figure 2 or like this (depending on signal and choice of parameters for process ( ξ t ) t ≥ 0 ) stochastic HH with periodic signal: voltage v(t) function of t ; black dotted line indicating periodicity of the semigroup 100 [mV] 60 20 0 0 100 200 300 400 [ms] stochastic HH with periodic signal: gating variables n(t) (violet), m(t) (blue), h(t) (grey) functions of t 1.0 0.8 0.6 0.4 0.2 0.0 0 100 200 300 400 [ms] stochastic HH with periodic signal: periodic signal and driving noisy input (mean reverting CIR type diffusion) 5 [mV] 0 −5 0 100 200 300 400 the following parameters werde used for signal and CIR : period = 28 , amplitude = 5 , sigma = 1.5 , tau = 0.25 , K = 30

  11. papers I: outline II: HH example III: proof of thm 1, sketch IV: lie brackets V: control VI: proof thm 1 references chamaeleon property classical deterministic HH systems with periodic deterministic signal t → � S ( t ): � dV t = S ( t ) dt − F ( V t , n t , m t , h t ) dt dn t = [ α n ( V t )(1 − n t ) − β n ( V t ) n t ] dt = [ α m ( V t )(1 − m t ) − β m ( V t ) m t ] dt dm t = [ α h ( V t )(1 − h t ) − β h ( V t ) h t ] dt dh t may show – depending on � S ( · ) – qualitatively quite different behaviour (spiking or non-spiking; single spikes or spike bursts, periodic or chaotic solutions; if periodic, periodicity of output may equal ℓ ≥ 1 periods of input; see interesting tableau based on numerical solutions in Endler 2012) proposition 1: ’chamaeleon property’ of ( ξ HH): stochastic ξ HH system ( X t ) 0 ≤ t ≤ T coding deterministic signal t → S ( t ) imitates with positive probability over arbitrarily long (but fixed) time intervals any deterministic HH with smooth and T -periodic signal � S ( · ) � = S ( · ) (the proof is a consequence of the control theorem)

Recommend


More recommend