ee361 signals and systems ii
play

EE361: SIGNALS AND SYSTEMS II CH4: CONTINUOUS TIME FOURIER TRANSFORM - PowerPoint PPT Presentation

1 EE361: SIGNALS AND SYSTEMS II CH4: CONTINUOUS TIME FOURIER TRANSFORM http://www.ee.unlv.edu/~b1morris/ee361 2 FOURIER TRANSFORM DERIVATION CHAPTER 4.1 3 FOURIER SERIES REMINDER Previously, FS allowed representation of a periodic


  1. 1 EE361: SIGNALS AND SYSTEMS II CH4: CONTINUOUS TIME FOURIER TRANSFORM http://www.ee.unlv.edu/~b1morris/ee361

  2. 2 FOURIER TRANSFORM DERIVATION CHAPTER 4.1

  3. 3 FOURIER SERIES REMINDER ο‚‘ Previously, FS allowed representation of a periodic signal as a linear combination of harmonically related exponentials 1 π‘ˆ 𝑦 𝑒 𝑓 βˆ’π‘˜π‘™πœ• 0 𝑒 𝑒𝑒 ο‚‘ 𝑦 𝑒 = Οƒ 𝑙 𝑏 𝑙 𝑓 π‘˜π‘™πœ• 0 𝑒 𝑏 𝑙 = π‘ˆ Χ¬ ο‚‘ Would like to extend this (Transform Analysis) idea to aperiodic (non-periodic) signals

  4. 4 CT FOURIER TRANSFORM DERIVATION I ο‚‘ Intuition: ο‚‘ Consider a periodic signal with period π‘ˆ ο‚‘ Let π‘ˆ β†’ ∞ ο‚‘ Infinite period οƒ  no longer periodic signal 2𝜌 ο‚‘ Results in πœ• 0 = π‘ˆ β†’ 0 ο‚‘ Zero frequency space between β€œharmonics” οƒ  differential π‘’πœ• ο‚‘ Envelope (like we saw with rectangle wave/sinc) defines the CTFT

  5. 5 CT FOURIER TRANSFORM DERIVATION II ο‚‘ Will skip derivation for now ο‚‘ Please see details in the book

  6. 6 CT FOURIER TRANSFORM PAIR ∞ π‘Œ π‘˜πœ• 𝑓 π‘˜πœ•π‘’ π‘’πœ• 1 synthesis eq (inverse FT) ο‚‘ 𝑦 𝑒 = 2𝜌 Χ¬ βˆ’βˆž ∞ 𝑦 𝑒 𝑓 βˆ’π‘˜πœ•π‘’ 𝑒𝑒 analysis eq (FT) ο‚‘ π‘Œ π‘˜πœ• = Χ¬ βˆ’βˆž ο‚‘ Denote ο‚‘ 𝑦 𝑒 ↔ π‘Œ(π‘˜πœ•) 𝑦 𝑒 = β„± βˆ’1 π‘Œ π‘˜πœ• ο‚‘ π‘Œ π‘˜πœ• = β„± 𝑦 𝑒

  7. 7 CTFT CONVERGENCE ο‚‘ There are conditions on signal 𝑦(𝑒) for FT to exist ο‚‘ Finite energy (square integrable) ∞ 𝑦 𝑒 2 𝑒𝑒 < ∞ ο‚‘ Χ¬ βˆ’βˆž ο‚‘ Dirichlet Conditions ο‚‘ We will not cover; see pg 290 for more discussion

  8. 8 CTFT FOR PERIODIC SIGNALS CHAPTER 4.2

  9. 9 FT OF PERIODIC SIGNALS ο‚‘ Derived FT by assuming a periodic padding of aperiodic signal 𝑦(𝑒) ο‚‘ What happens for FT of a periodic signal? ο‚‘ Note: periodic signal will not have finite energy ο‚‘ Cannot evaluate FT integral directly

  10. 10 PERIODIC FT DERIVATION I ο‚‘ From derivation of FT, π‘Œ π‘˜πœ• is the envelope of π‘ˆπ‘ 𝑙 ο‚‘ FS coefficients are scaled samples of π‘Œ π‘˜πœ• ο‚‘ Assume 𝑦(𝑒) is periodic 𝑦 𝑒 = 𝑦 𝑒 + π‘ˆ 2𝜌 ∞ ο‚‘ Then, 𝑦 𝑒 = Οƒ 𝑙=βˆ’βˆž 𝑏 𝑙 𝑓 π‘˜π‘™πœ• 0 𝑒 , with πœ• 0 = π‘ˆ ο‚‘ Plug into FT integral and solve ο‚‘ Will not solve for now on slides οƒ  see book

  11. 11 PERIODIC FT DERIVATION II ο‚‘ Important property ο‚‘ 𝑦 𝑒 = 𝑓 π‘˜π‘™πœ• 0 𝑒 ↔ π‘Œ π‘˜πœ• = 2πœŒπœ€ πœ• βˆ’ π‘™πœ• 0 ο‚‘ Transform pair 𝑏 𝑙 𝑓 π‘˜π‘™πœ• 0 𝑒 ↔ 2𝜌 Οƒ 𝑙=βˆ’βˆž ∞ ∞ ο‚‘ Οƒ 𝑙=βˆ’βˆž 𝑏 𝑙 πœ€ πœ• βˆ’ π‘™πœ• 0 ο‚‘ Each 𝑏 𝑙 coefficient gets turned into a delta at the harmonic frequency

  12. 12 FT OF SINUSOIDAL SIGNALS ο‚‘ FT of periodic signals is important because of sinusoidal signals (cannot solve using FT integral) ο‚‘ Can use insight of complex exponential ↔ shifted delta from periodic FT derivation ο‚‘ Important examples

  13. 13 CTFT PROPERTIES AND PAIRS CHAPTER 4.3-4.6

  14. 14 PROPERTIES TABLE 4.1 (PG 328) ο‚‘ Linearity ο‚‘ Time scaling ο‚‘ 𝑦 𝑒 ↔ π‘Œ(π‘˜πœ•) 1 π‘˜πœ• ο‚‘ 𝑦 𝑏𝑒 ↔ 𝑏 π‘Œ ο‚‘ 𝑧 𝑒 ↔ 𝑍 π‘˜πœ• 𝑏 ο‚‘ Differentiation in time ο‚‘ 𝑏𝑦 𝑒 + 𝑐𝑧 𝑒 ↔ π‘π‘Œ π‘˜πœ• + 𝑐𝑍 π‘˜πœ• ο‚‘ Time shifting 𝑒𝑦 𝑒 ↔ π‘˜πœ•π‘Œ(π‘˜πœ•) ο‚‘ 𝑒𝑒 ο‚‘ 𝑦 𝑒 βˆ’ 𝑒 0 ↔ 𝑓 βˆ’π‘˜πœ•π‘’ 0 π‘Œ(π‘˜πœ•) ο‚‘ Integration in time ο‚‘ Note, this is a phase shift of π‘Œ π‘˜πœ• ο‚‘ Conjugation 𝑒 1 ο‚‘ Χ¬ 𝑦 𝜐 π‘’πœ ↔ π‘˜πœ• π‘Œ π‘˜πœ• + βˆ’βˆž ο‚‘ 𝑦 βˆ— 𝑒 ↔ π‘Œ βˆ— βˆ’π‘˜πœ• πœŒπ‘Œ 0 πœ€ πœ• ο‚‘ Remember: conjugation switches sign of imaginary part

  15. 15 CONVOLUTION/MULTIPLICATION PROPERTIES ο‚‘ Convolution ο‚‘ 𝑧 𝑒 = β„Ž 𝑒 βˆ— 𝑦 𝑒 ↔ 𝑍 π‘˜πœ• = 𝐼 π‘˜πœ• π‘Œ π‘˜πœ• ο‚‘ Multiplication ∞ 𝑇 π‘˜πœ„ 𝑄 π‘˜ πœ• βˆ’ πœ„ 1 ο‚‘ 𝑠 𝑒 = 𝑑 𝑒 π‘ž 𝑒 ↔ 𝑆 π‘˜πœ• = π‘’πœ„ 2𝜌 Χ¬ βˆ’βˆž 1 ο‚‘ 𝑆 π‘˜πœ• = 2𝜌 𝑇 π‘˜πœ• βˆ— 𝑄 π‘˜πœ• ο‚‘ Dual properties – convolution ↔ multiplication

  16. 16 FT PAIRS TABLE 4.2 (PG 329) ο‚‘ Be sure to bookmark this table (right next to Table 4.1 Properties) ο‚‘ Note in particular some very useful pairs that aren’t typical 1 ο‚‘ 𝑒𝑓 βˆ’π‘π‘’ 𝑣 𝑒 ↔ repeated root 𝑏+π‘˜πœ• 2 1 ο‚‘ 𝑣 𝑒 ↔ π‘˜πœ• + πœŒπœ€(πœ•)

  17. 17 CTFT AND LTI SYSTEMS CHAPTER 4.7

  18. 18 FIRST-ORDER EXAMPLE ο‚‘ Find impulse response β„Ž(𝑒)

  19. 19 LTI SYSTEM ANALYSIS ο‚‘ Note for 𝐼 π‘˜πœ• to exist, the LTI system must have impulse response β„Ž(𝑒) that satisfies stability conditions ο‚‘ FT is only for the analysis of stable LTI systems ο‚‘ For not stable systems, use Laplace Transform in Ch9

  20. 20 GENERAL DIFFERENTIAL EQUATION SYSTEM ο‚‘ Solve for frequency response ο‚‘ Take FT of both sides ο‚‘ Rational form – ratio of polynomials in π‘˜πœ• ο‚‘ Best solved using partial fraction expansion (Appendix A)

Recommend


More recommend