1 EE361: SIGNALS AND SYSTEMS II CH5: DISCRETE TIME FOURIER TRANSFORM http://www.ee.unlv.edu/~b1morris/ee361
2 FOURIER TRANSFORM DERIVATION CHAPTER 5.1-5.2
3 FOURIER SERIES REMINDER ๏ก Previously, FS allowed representation of a periodic signal as a linear combination of harmonically related exponentials ๐ ๐ = 1 ๐ ฯ ๐=<๐> ๐ฆ ๐ ๐ โ๐๐๐ 0 ๐ ๐๐ข ๏ก ๐ฆ[๐] = ฯ ๐=<๐> ๐ ๐ ๐ ๐๐๐ 0 ๐ 2๐ ๏ก ๐ 0 = ๐ ๏ก Would like to extend this (Transform Analysis) idea to aperiodic (non-periodic) signals
4 DT FOURIER TRANSFORM DERIVATION ๏ก Intuition (same idea as CTFT): ๏ก Consider a finite signal ๐ฆ[๐] ๏ก Periodic pad to get periodic signal เทค ๐ฆ[๐] ๏ก Find FS representation of เทค ๐ฆ[๐] ๏ก Analyze FS as ๐ โ โ (๐ 0 โ 0) to get DTFT ๏ก Note DTFT is discrete in time domain โ continuous in frequency domain ๏ก Envelope ๐(๐ ๐๐ ) of normalized FS coefficients {๐ ๐ ๐} defines the DTFT (spectrum of ๐ฆ[๐] )
5 DT FOURIER TRANSFORM PAIR 1 2๐ ๐ ๐ ๐๐ ๐ ๐๐๐ ๐๐ synthesis eq (inverse FT) ๏ก ๐ฆ[๐] = 2๐ ืฌ ๏ก ๐ ๐ ๐๐ = ฯ ๐=โโ โ ๐ฆ ๐ ๐ โ๐๐๐ analysis eq (FT) ๏ก DTFT is discrete in time โ continuous in frequency ๏ก Notice the DTFT ๐(๐ ๐๐ ) is period with period 2๐
6 DTFT CONVERGENCE ๏ก The FT converges if absolutely summable ๏ก ฯ ๐ ๐ฆ ๐ < โ 2 < โ finite energy ๏ก ฯ ๐ ๐ฆ ๐ ๏ก iFT has not convergence issues because ๐ ๐ ๐๐ is periodic ๏ก Integral is over a finite 2๐ period (similar to FS)
7 FT OF PERIODIC SIGNALS ๏ก Important property ๏ก ๐ฆ ๐ = ๐ ๐๐๐ 0 ๐ โ ๐ ๐๐ = ฯ ๐=โโ โ 2๐๐ ๐ โ ๐๐ 0 โ 2๐๐ ๏ก Impulse at frequency ๐๐ 0 and 2๐ shifts ๏ก Transform pair ๏ก ฯ ๐=<๐> ๐ ๐ ๐ ๐๐๐ 0 ๐ โ 2๐ ฯ ๐=โโ โ ๐ ๐ ๐ ๐ โ ๐๐ 0 ๏ก Each ๐ ๐ coefficient gets turned into a delta at the harmonic frequency
8 DTFT PROPERTIES AND PAIRS CHAPTER 5.3-5.6
9 PROPERTIES/PAIRS TABLES ๏ก Most often will use Tables to solve problems ๏ก Table 5.1 pg 391 โ DTFT Properties ๏ก Table 5.2 pg 392 โ DTFT Transform Pairs
10 NOTEWORTHY PROPERTIES ๏ก Periodicity โ ๐ ๐ ๐๐ = ๐ ๐ ๐ ๐+2๐ ๏ก Time shift โ ๐ฆ ๐ โ ๐ 0 โ ๐ โ๐๐๐ 0 ๐ ๐ ๐๐ ๏ก Frequency/phase shift โ ๐ ๐๐ 0 ๐ ๐ฆ ๐ โ ๐ ๐ ๐ ๐โ๐ 0 ๏ก Convolution โ ๐ฆ ๐ โ ๐ง ๐ โ ๐ ๐ ๐๐ ๐ ๐ ๐๐ 1 2๐ ๐ ๐ ๐๐ ๐ ๐ ๐ ๐โ๐ ๏ก Multiplication โ ๐ฆ ๐ ๐ง ๐ โ ๐๐ 2๐ ืฌ ๏ก Notice this is an integral over a single period ๏ periodic convolution 1 2๐ ๐ ๐ ๐๐ โ ๐ ๐ ๐๐
11 NOTEWORTHY PAIRS I ๏ก Decaying exponential ๏ก โ ๐ = ๐ ๐ ๐ฃ[๐] ๐ < 1 ๏ก Magnitude response
12 DECAYING EXPONENTIAL ๏ก 0 < ๐ < 1 ๏ก โ1 < ๐ < 0 ๏ก Lowpass filter ๏ก Highpass filter
13 NOTEWORTHY PAIRS II ๏ก Impulse ๏ก ๐ฆ ๐ = ๐[๐] โ ๐ ๐ ๐๐ = ฯ ๐ ๐ ๐ ๐ โ๐๐๐ = ฯ ๐ ๐ ๐ ๐ โ๐๐ 0 = ฯ ๐ ๐ ๐ = 1 ๏ก ๐ฆ ๐ = ๐ ๐ โ ๐ 0 โ ๐ ๐ ๐๐ = ฯ ๐ ๐ ๐ โ ๐ 0 ๐ โ๐๐๐ = ฯ ๐ ๐ ๐ โ ๐ 0 ๐ โ๐๐๐ 0 = ๐ โ๐๐๐ 0 ๏ก Rectangle pulse sin ๐ 2๐1+1 ๏ก ๐ฆ ๐ = แ1 ๐ โค ๐ 1 โ ๐ ๐ ๐๐ = ฯ ๐=โ๐ 1 ๐ โ๐๐๐ = ๐ 1 2 sin ๐ 0 ๐ > ๐ 1 2 ๏ก Periodic signal ๏ก ๐ฆ ๐ = ฯ ๐=<๐> ๐ ๐ ๐ ๐๐๐ 0 ๐ โ ๐ ๐ ๐๐ = 2๐ ฯ ๐=โโ โ ๐ ๐ ๐ ๐ โ ๐๐ 0 ๏ก One period of ๐ ๐ copied
14 DTFT AND LTI SYSTEMS CHAPTER 5.8
15 GENERAL DIFFERENCE EQUATION SYSTEM ๏ก Solve for frequency response ๏ก Take FT of both sides ๏ก Rational form โ ratio of polynomials in e โ๐๐ ๏ก Best solved using partial fraction expansion (Appendix A) ๏ก Note special heavy-side cover-up approach for repeated root
16 LTI SYSTEM APPROACH ๏ก Same techniques as in continuous case ๏ก ๐ ๐ ๐๐ = ๐ผ ๐ ๐๐ ๐ ๐ ๐๐ ๏ก Partial fraction expansion ๏ก Inverse FT with tables
Recommend
More recommend