ee361 signals and systems ii

EE361: SIGNALS AND SYSTEMS II CH5: DISCRETE TIME FOURIER TRANSFORM - PowerPoint PPT Presentation

1 EE361: SIGNALS AND SYSTEMS II CH5: DISCRETE TIME FOURIER TRANSFORM http://www.ee.unlv.edu/~b1morris/ee361 2 FOURIER TRANSFORM DERIVATION CHAPTER 5.1-5.2 3 FOURIER SERIES REMINDER Previously, FS allowed representation of a periodic


  1. 1 EE361: SIGNALS AND SYSTEMS II CH5: DISCRETE TIME FOURIER TRANSFORM http://www.ee.unlv.edu/~b1morris/ee361

  2. 2 FOURIER TRANSFORM DERIVATION CHAPTER 5.1-5.2

  3. 3 FOURIER SERIES REMINDER ο‚‘ Previously, FS allowed representation of a periodic signal as a linear combination of harmonically related exponentials 𝑏 𝑙 = 1 𝑂 Οƒ π‘œ=<𝑂> 𝑦 π‘œ 𝑓 βˆ’π‘˜π‘™πœ• 0 π‘œ 𝑒𝑒 ο‚‘ 𝑦[π‘œ] = Οƒ 𝑙=<𝑂> 𝑏 𝑙 𝑓 π‘˜π‘™πœ• 0 π‘œ 2𝜌 ο‚‘ πœ• 0 = 𝑂 ο‚‘ Would like to extend this (Transform Analysis) idea to aperiodic (non-periodic) signals

  4. 4 DT FOURIER TRANSFORM DERIVATION ο‚‘ Intuition (same idea as CTFT): ο‚‘ Consider a finite signal 𝑦[π‘œ] ο‚‘ Periodic pad to get periodic signal ΰ·€ 𝑦[π‘œ] ο‚‘ Find FS representation of ΰ·€ 𝑦[π‘œ] ο‚‘ Analyze FS as 𝑂 β†’ ∞ (πœ• 0 β†’ 0) to get DTFT ο‚‘ Note DTFT is discrete in time domain – continuous in frequency domain ο‚‘ Envelope π‘Œ(𝑓 π‘˜πœ• ) of normalized FS coefficients {𝑏 𝑙 𝑂} defines the DTFT (spectrum of 𝑦[π‘œ] )

  5. 5 DT FOURIER TRANSFORM PAIR 1 2𝜌 π‘Œ 𝑓 π‘˜πœ• 𝑓 π‘˜πœ•π‘œ π‘’πœ• synthesis eq (inverse FT) ο‚‘ 𝑦[π‘œ] = 2𝜌 Χ¬ ο‚‘ π‘Œ 𝑓 π‘˜πœ• = Οƒ π‘œ=βˆ’βˆž ∞ 𝑦 π‘œ 𝑓 βˆ’π‘˜πœ•π‘œ analysis eq (FT) ο‚‘ DTFT is discrete in time – continuous in frequency ο‚‘ Notice the DTFT π‘Œ(𝑓 π‘˜πœ• ) is period with period 2𝜌

  6. 6 DTFT CONVERGENCE ο‚‘ The FT converges if absolutely summable ο‚‘ Οƒ π‘œ 𝑦 π‘œ < ∞ 2 < ∞ finite energy ο‚‘ Οƒ π‘œ 𝑦 π‘œ ο‚‘ iFT has not convergence issues because π‘Œ 𝑓 π‘˜πœ• is periodic ο‚‘ Integral is over a finite 2𝜌 period (similar to FS)

  7. 7 FT OF PERIODIC SIGNALS ο‚‘ Important property ο‚‘ 𝑦 π‘œ = 𝑓 π‘˜π‘™πœ• 0 π‘œ ↔ π‘Œ π‘˜πœ• = Οƒ π‘š=βˆ’βˆž ∞ 2πœŒπœ€ πœ• βˆ’ π‘™πœ• 0 βˆ’ 2πœŒπ‘š ο‚‘ Impulse at frequency π‘™πœ• 0 and 2𝜌 shifts ο‚‘ Transform pair ο‚‘ Οƒ 𝑙=<𝑂> 𝑏 𝑙 𝑓 π‘˜π‘™πœ• 0 π‘œ ↔ 2𝜌 Οƒ 𝑙=βˆ’βˆž ∞ 𝑏 𝑙 πœ€ πœ• βˆ’ π‘™πœ• 0 ο‚‘ Each 𝑏 𝑙 coefficient gets turned into a delta at the harmonic frequency

  8. 8 DTFT PROPERTIES AND PAIRS CHAPTER 5.3-5.6

  9. 9 PROPERTIES/PAIRS TABLES ο‚‘ Most often will use Tables to solve problems ο‚‘ Table 5.1 pg 391 – DTFT Properties ο‚‘ Table 5.2 pg 392 – DTFT Transform Pairs

  10. 10 NOTEWORTHY PROPERTIES ο‚‘ Periodicity – π‘Œ 𝑓 π‘˜πœ• = π‘Œ 𝑓 π‘˜ πœ•+2𝜌 ο‚‘ Time shift – 𝑦 π‘œ βˆ’ π‘œ 0 ↔ 𝑓 βˆ’π‘˜πœ•π‘œ 0 π‘Œ 𝑓 π‘˜πœ• ο‚‘ Frequency/phase shift – 𝑓 π‘˜πœ• 0 π‘œ 𝑦 π‘œ ↔ π‘Œ 𝑓 π‘˜ πœ•βˆ’πœ• 0 ο‚‘ Convolution – 𝑦 π‘œ βˆ— 𝑧 π‘œ ↔ π‘Œ 𝑓 π‘˜πœ• 𝑍 𝑓 π‘˜πœ• 1 2𝜌 π‘Œ 𝑓 π‘˜πœ„ 𝑍 𝑓 π‘˜ πœ•βˆ’πœ„ ο‚‘ Multiplication – 𝑦 π‘œ 𝑧 π‘œ ↔ π‘’πœ„ 2𝜌 Χ¬ ο‚‘ Notice this is an integral over a single period οƒ  periodic convolution 1 2𝜌 π‘Œ 𝑓 π‘˜πœ• βˆ— 𝑍 𝑓 π‘˜πœ•

  11. 11 NOTEWORTHY PAIRS I ο‚‘ Decaying exponential ο‚‘ β„Ž π‘œ = 𝑏 π‘œ 𝑣[π‘œ] 𝑏 < 1 ο‚‘ Magnitude response

  12. 12 DECAYING EXPONENTIAL ο‚‘ 0 < 𝑏 < 1 ο‚‘ βˆ’1 < 𝑏 < 0 ο‚‘ Lowpass filter ο‚‘ Highpass filter

  13. 13 NOTEWORTHY PAIRS II ο‚‘ Impulse ο‚‘ 𝑦 π‘œ = πœ€[π‘œ] ↔ π‘Œ 𝑓 π‘˜πœ• = Οƒ π‘œ πœ€ π‘œ 𝑓 βˆ’π‘˜πœ•π‘œ = Οƒ π‘œ πœ€ π‘œ 𝑓 βˆ’π‘˜πœ• 0 = Οƒ π‘œ πœ€ π‘œ = 1 ο‚‘ 𝑦 π‘œ = πœ€ π‘œ βˆ’ π‘œ 0 ↔ π‘Œ 𝑓 π‘˜πœ• = Οƒ π‘œ πœ€ π‘œ βˆ’ π‘œ 0 𝑓 βˆ’π‘˜πœ•π‘œ = Οƒ π‘œ πœ€ π‘œ βˆ’ π‘œ 0 𝑓 βˆ’π‘˜πœ•π‘œ 0 = 𝑓 βˆ’π‘˜πœ•π‘œ 0 ο‚‘ Rectangle pulse sin πœ• 2𝑂1+1 ο‚‘ 𝑦 π‘œ = α‰Š1 π‘œ ≀ 𝑂 1 ↔ π‘Œ 𝑓 π‘˜πœ• = Οƒ π‘œ=βˆ’π‘‚ 1 𝑓 βˆ’π‘˜πœ•π‘œ = 𝑂 1 2 sin πœ• 0 π‘œ > 𝑂 1 2 ο‚‘ Periodic signal ο‚‘ 𝑦 π‘œ = Οƒ 𝑙=<𝑂> 𝑏 𝑙 𝑓 π‘˜π‘™πœ• 0 π‘œ ↔ π‘Œ 𝑓 π‘˜πœ• = 2𝜌 Οƒ 𝑙=βˆ’βˆž ∞ 𝑏 𝑙 πœ€ πœ• βˆ’ π‘™πœ• 0 ο‚‘ One period of 𝑏 𝑙 copied

  14. 14 DTFT AND LTI SYSTEMS CHAPTER 5.8

  15. 15 GENERAL DIFFERENCE EQUATION SYSTEM ο‚‘ Solve for frequency response ο‚‘ Take FT of both sides ο‚‘ Rational form – ratio of polynomials in e βˆ’π‘˜πœ• ο‚‘ Best solved using partial fraction expansion (Appendix A) ο‚‘ Note special heavy-side cover-up approach for repeated root

  16. 16 LTI SYSTEM APPROACH ο‚‘ Same techniques as in continuous case ο‚‘ 𝑍 𝑓 π‘˜πœ• = 𝐼 𝑓 π‘˜πœ• π‘Œ 𝑓 π‘˜πœ• ο‚‘ Partial fraction expansion ο‚‘ Inverse FT with tables

Recommend


More recommend