A New Way to Infer CSM Properties Ryan Foley University of Illinois
Single Degenerate Wind Accretion
Single Degenerate Wind Accretion
Variable Na ➡ Circumstellar Material Time Patat et al. 2007
Double Degenerate
Double Degenerate
High-Resolution Spectra Probe CSM A B 1.2 1.2 1 1 Normalized Flux Normalized Flux 0.8 0.8 0.6 0.6 SN2008ec SN2007sa 0.4 0.4 Na D2 − Jul 18, 2008 Na D2 − Jan 23, 2008 Na D1 − Jul 18, 2008 0.2 Na D1 − Jan 23, 2008 0.2 0 0 − 200 − 150 − 100 − 50 0 50 100 150 200 − 200 − 150 − 100 − 50 0 50 100 150 200 1.2 D C 1 1 Normalized Flux Normalized Flux 0.8 0.8 0.6 0.6 SN2007sr 0.4 0.4 SN2007fs Na D2 − Jan 17, 2008 Na D2 − Jul 19, 2007 Na D1 − Jan 17, 2008 0.2 0.2 Na D1 − Jul 19, 2007 0 0 − 200 − 150 − 100 − 50 0 50 100 150 200 − 200 − 150 − 100 − 50 0 50 100 150 200 Relative Velocity [km s − 1 ] Relative Velocity [km s − 1 ] − 1 Sternberg et al. 2011
High-Resolution Spectra Probe CSM A B 1.2 1.2 1 1 Normalized Flux Normalized Flux 0.8 0.8 0.6 0.6 SN2008ec SN2007sa Blue 0.4 0.4 Red Na D2 − Jul 18, 2008 Na D2 − Jan 23, 2008 Na D1 − Jul 18, 2008 0.2 Na D1 − Jan 23, 2008 0.2 0 0 − 200 − 150 − 100 − 50 0 50 100 150 200 − 200 − 150 − 100 − 50 0 50 100 150 200 1.2 D C 1 1 Normalized Flux Normalized Flux 0.8 0.8 0.6 0.6 SN2007sr 0.4 0.4 Single Sym SN2007fs Na D2 − Jan 17, 2008 Na D2 − Jul 19, 2007 Na D1 − Jan 17, 2008 0.2 0.2 Na D1 − Jul 19, 2007 0 0 − 200 − 150 − 100 − 50 0 50 100 150 200 − 200 − 150 − 100 − 50 0 50 100 150 200 Relative Velocity [km s − 1 ] Relative Velocity [km s − 1 ] − 1 Sternberg et al. 2011
Equal Blue/Redshifted Fraction for ISM
Equal Blue/Redshifted Fraction for ISM
Equal Blue/Redshifted Fraction for ISM
Many SN Ia Progenitors Have Winds SNe Ia Blueshifted 22.7% Redshifted Single/Symmetric 54.6% 22.7% Sternberg et al. 2011
SNe Ia With Variable Na Have Low R V R V = 3.1 R V = 1.6 Goobar p=-2.5+/-0.1 CCM+O Rv=1.6+/-0.1 Circumstellar CCM+O Rv=3.1 Scattering Folatelli et al. 2010
2 Values of R V ? -20 A V -19 -18 -17 -16 R V = A V /E(B-V) Wang et al. 2009
2 Values of R V ? -20 A V -19 -18 -17 -16 R V = A V /E(B-V) Wang et al. 2009
Explosion Linked to Environment Full SN Ia − 16 Sample Si II Velocity at Maximum (10 3 km s − 1 ) − 14 CSM No CSM − 12 − 10 0.0 0.5 1.0 1.5 B Max − V Max (mag) Foley et al., 2012
Explosion Linked to Environment Full SN Ia 1.0 Sample 0.8 Cumulative Fraction High-Res 0.6 Sample 0.4 Blueshifted 0.2 FSK11 Na HR Blue 0.0 − 9 − 10 − 11 − 12 − 13 − 14 − 15 − 16 Si II Velocity at Maximum (10 3 km s − 1 ) Foley et al., 2012
Implications Either: Multiple progenitor channels where progenitors with winds produce more energetic explosions Or Asymmetric explosions with higher velocity ejecta aligned with winds
Blueshifted Systems Are Gas-Rich 06cm Sin g le/Symmetric 15 15 Redshifted 08fp Bl u eshifted 02bo -2 ) Non-detection 14 14 lo g N Na I (cm 86G 02j g 09le 09i g 07le 06X 02ha 13 13 07fb 07kk 12 12 Host 11 11 0.01 0.1 1 A V (ma g ) Phillips et al., 2013
Blueshifted Systems Are Gas-Rich 10 10 86G 02bo 02j g 06X 08fp 06cm 07le 09le 09ds 02ha 1 1 07fb EW Na I D (Å) EW Na I D (Å) 07kk 09i g 0.1 0.1 Milky Way Sin g le/Symmetric Redshifted Bl u eshifted P oznanski et al. (2012) M u nari & Zwitter (1997) x 2.53 0.01 0.01 0.01 0.01 0.1 0.1 1 1 10 10 A V (ma g ) A V (ma g ) Phillips et al., 2013
Blueshifted/Redshifted Separate Cleanly Blueshifted 09le Gas − Rich 12cg 1.00 Na I D EW (Å) 0.10 Redshifted Single Symmetric Gas − Poor 0.01 0.01 0.10 1.00 E(B − V) (mag) Foley et al., in prep.
∆ EW Separates Gas-Rich/Gas-Poor 40 Gas − Rich Gas − Poor 30 Frequency 20 10 0 − 2 − 1 0 1 2 3 Δ EW (Å) Foley et al., in prep.
∆ EW Works for Low-Resolution Spectra! 0.0 0.2 0.4 0.6 0.8 1.0 Gas − Rich Probability Na I D EW (Å) 1.0 0.1 Foley et al., in prep. 0.01 0.10 1.00 E(B − V) (mag)
Explosion Linked to Environment 1.0 1.0 0.8 0.8 Cumulative Fraction Cumulative Fraction 0.6 0.6 0.4 0.4 0.2 0.2 FSK11 HR Blue 0.0 0.0 − 9 − 10 − 11 − 12 − 13 − 14 − 15 − 16 � 8 � 10 � 12 � 14 � 16 Si II Velocity at Maximum (10 3 km s − 1 ) Velocity (10 3 km s � 1 ) Foley et al., 2012 Foley et al., in prep.
� � Briefly... SN Cosmology is Currently Limited by the Low-z Anchor Sample Table 2: Noise Sources Table 1: Low- z Sets Noise source d w Set Total Final JRK07 133 49 Total Uncertainty 0.072 CFA3 185 85 Statistical Uncertainty 0.050 CFA4 94 43 Systematic Uncertainty 0.052 CSP 85 45 Photometric calibration 0.045 SN color model 0.023 8 (!!) Di ff erent Host galaxy dependance 0.015 MW extinction 0.013 Low-z Samples Selection Bias 0.012 Coherent Flows 0.007 Combined
� � Briefly... SN Cosmology is Currently Limited by the Low-z Anchor Sample Table 2: Noise Sources Table 1: Low- z Sets Noise source d w Set Total Final JRK07 133 49 Total Uncertainty 0.072 CFA3 185 85 Statistical Uncertainty 0.050 CFA4 94 43 Systematic Uncertainty 0.052 CSP 85 45 Photometric calibration 0.045 SN color model 0.023 8 (!!) Di ff erent Host galaxy dependance 0.015 MW extinction 0.013 Low-z Samples Selection Bias 0.012 Coherent Flows 0.007 Combined
Low-z Calibration a Real Problem CfAK CfAK CfAS CfAS CfA4 CfA4 CSP CSP CSP CSP SNLS SNLS SDSS SDSS CfA1/2 CfA1/2 B B B B B B B B B B g g g g g g 40 40 Cal. Offset Relative to PS1 (mmag) Cal. Offset Relative to PS1 (mmag) 20 20 0 0 -20 -20 PS1 g PS1 g -40 -40 Scolnic et al., in prep.
The Ideal Low-z Sample Single System Well Calibrated/Self-Consistent Full Sky Coverage w/Multiple Observations Precisely Measured Filters Existing Data Reduction Pipeline Large High-z Sample on Same System
Pan-STARRS Supernova Survey 1.8 m mirror 7 deg 2 Field of View 1.4 Gigapixel Camera 25% of time for SN Survey Nightly Observations of ~6 Fields ~400 high-z SNe Ia
Pan-STARRS Supernova Survey 1.8 m mirror 7 deg 2 Field of View 1.4 Gigapixel Camera 25% of time for SN Survey Nightly Observations of ~6 Fields ~400 high-z SNe Ia
Pan-STARRS High-z Sample Distance Modulus (mag) 44 CfA4 PS1 42 CfA3 CfA2 40 CfA1 CSP 38 Ω Λ = 0.7 Ω m = 0.3 36 Ω Λ = 0.3 Ω m = 0 Ω Λ = 1 Ω m = 0 34 1.0 Residuals (mag) 0.5 0.0 − 0.5 − 1.0 0.01 0.02 0.06 0.10 0.20 0.60 Redshift Scolnic et al., in prep.
Redefine Low-z Sample Founding Fathers: -0.5 Ryan Foley -1.0 Armin Rest w Dan Scolnic -1.5 Saurabh Jha -2.0 PS1+low-z Sim PS1+High-z+Foundation Sim 0.0 0.2 0.4 0.6 0.8 Ω m Foley et al., in prep. Foundation Sample: PS1 Telescope 400–800 z < 0.1 SNe Ia ~1000 SNe Ia with 0 < z < 0.8
Redefine Low-z Sample Founding Fathers: -0.5 2.5 x Ryan Foley Improvement! -1.0 Armin Rest w Dan Scolnic -1.5 Saurabh Jha -2.0 PS1+low-z Sim PS1+High-z+Foundation Sim 0.0 0.2 0.4 0.6 0.8 Ω m Foley et al., in prep. Foundation Sample: PS1 Telescope 400–800 z < 0.1 SNe Ia ~1000 SNe Ia with 0 < z < 0.8
Foundation Data 16 z − 3 Apparent Brightness (mag) 17 i − 2 18 r − 1 19 20 g 21 − 10 0 10 20 30 40 Rest − frame Days Relative to B Maximum Foley et al., in prep. Already 37 SNe Ia 39 SOAR/KPNO nights over 2 years +Salt for spectroscopy
Foundation Sample As of Today: 37 SNe g 15 r i 16 z Apparent Brightness (mag) 17 18 19 20 21 50 100 150 200 MJD − 57000
Foundation Sample As of Today: 37 SNe g g 15 15 r r i i 16 16 z z Apparent Brightness (mag) Apparent Brightness (mag) 17 17 18 18 19 19 20 20 21 21 50 50 100 100 150 150 200 200 MJD − 57000 MJD − 57000
Two Questions: Why are the observables (and explosions?) so similar for gas-rich and gas-poor SNe? How can we further improve the Foundation Survey?
Recommend
More recommend