hardness of exact distance queries in sparse graphs
play

Hardness of exact distance queries in sparse graphs through hub - PowerPoint PPT Presentation

Hardness of exact distance queries in sparse graphs through hub labeling Adrian Kosowski, Przemysaw Uznaski and Laurent Viennot Inria University of Wrocaw Irif (Paris Univ.) Shortest-path oracle What is the shortest path from A to


  1. Hardness of exact distance queries in sparse graphs through hub labeling Adrian Kosowski, Przemysław Uznański and Laurent Viennot Inria – University of Wrocław – Irif (Paris Univ.)

  2. Shortest-path oracle What is the shortest path from A to B? 1 / 1 2 / 14 ⇐ ? ⇒

  3. Distance oracle What is the distance from A to B? Trade-off data-structure size vs query time. Fastest oracles in road networks use hub labeling [Abraham, Delling, Fiat, Goldberg, Werneck 2016] Huge gap between lower and upper bounds for sparse graphs. This talk : better understand why. 1 / 5 3 / 14 ⇐ ? ⇒

  4. Distance oracle What is the distance from A to B? Trade-off data-structure size vs query time. Fastest oracles in road networks use hub labeling [Abraham, Delling, Fiat, Goldberg, Werneck 2016] Huge gap between lower and upper bounds for sparse graphs. This talk : better understand why. 2 / 5 3 / 14 ⇐ ? ⇒

  5. Distance oracle What is the distance from A to B? Trade-off data-structure size vs query time. Fastest oracles in road networks use hub labeling [Abraham, Delling, Fiat, Goldberg, Werneck 2016] Huge gap between lower and upper bounds for sparse graphs. This talk : better understand why. 3 / 5 3 / 14 ⇐ ? ⇒

  6. Distance oracle What is the distance from A to B? Trade-off data-structure size vs query time. Fastest oracles in road networks use hub labeling [Abraham, Delling, Fiat, Goldberg, Werneck 2016] Huge gap between lower and upper bounds for sparse graphs. This talk : better understand why. 4 / 5 3 / 14 ⇐ ? ⇒

  7. Distance oracle What is the distance from A to B? Trade-off data-structure size vs query time. Fastest oracles in road networks use hub labeling [Abraham, Delling, Fiat, Goldberg, Werneck 2016] Huge gap between lower and upper bounds for sparse graphs. This talk : better understand why. 5 / 5 3 / 14 ⇐ ? ⇒

  8. Distance oracles 1 / 1 4 / 14 ⇐ ? ⇒

  9. Distance labelings 1 / 1 5 / 14 ⇐ ? ⇒

  10. Motivation : understand gaps for sparse graphs Sparse : m = O ( n ) or ∆ = O (1) 1/ Ω( √ n ) ≤ DistLab ( n ) ≤ O ( n log log n log n ) √ n n 2/ Ω( log n ) ≤ HubLab ( n ) ≤ O ( log n ) [Gavoille, Peleg, Pérennes, Raz 2004] [Alstrup, Dahlgaard, Bæk, Knudsen 2016] [Gawrychowski, Kosovski, Uznański 2016] 1 / 1 6 / 14 ⇐ ? ⇒

  11. Our results ( ∆ = O (1) ) 1/ log n ) SumIndex ( n ) ≤ DistLab ( n ) 1 2 O ( √ n √ n ) ≤ SumIndex ( n ) ≤ � O ( Ω( √ log n ) 2 [Nisan, Wigderson 1993] [Babai, Gal, Kimmel, Lokan 1995, 2003] [Pudlak, Rodl, Sgall 1997] n n 2/ log n ) ≤ HubLab ( n ) ≤ O ( RS ( n ) 1/7 ) 2 O ( √ 2 Ω log ∗ n ≤ RS ( n ) ≤ 2 O ( √ log n ) [Ruzsa, Szemerédi 1978] [Behrand 1946] [Elkin 2010] [Fox 2011] 1 / 3 7 / 14 ⇐ ? ⇒

  12. Our results ( ∆ = O (1) ) 1/ log n ) SumIndex ( n ) ≤ DistLab ( n ) 1 2 O ( √ n √ n ) ≤ SumIndex ( n ) ≤ � O ( Ω( √ log n ) 2 [Nisan, Wigderson 1993] [Babai, Gal, Kimmel, Lokan 1995, 2003] [Pudlak, Rodl, Sgall 1997] n n 2/ log n ) ≤ HubLab ( n ) ≤ O ( RS ( n ) 1/7 ) 2 O ( √ 2 Ω log ∗ n ≤ RS ( n ) ≤ 2 O ( √ log n ) [Ruzsa, Szemerédi 1978] [Behrand 1946] [Elkin 2010] [Fox 2011] 2 / 3 7 / 14 ⇐ ? ⇒

  13. Our results ( ∆ = O (1) ) 1/ log n ) SumIndex ( n ) ≤ DistLab ( n ) 1 2 O ( √ n √ n ) ≤ SumIndex ( n ) ≤ � O ( Ω( √ log n ) 2 [Nisan, Wigderson 1993] [Babai, Gal, Kimmel, Lokan 1995, 2003] [Pudlak, Rodl, Sgall 1997] n n 2/ log n ) ≤ HubLab ( n ) ≤ O ( RS ( n ) 1/7 ) 2 O ( √ 2 Ω log ∗ n ≤ RS ( n ) ≤ 2 O ( √ log n ) [Ruzsa, Szemerédi 1978] [Behrand 1946] [Elkin 2010] [Fox 2011] 3 / 3 7 / 14 ⇐ ? ⇒

  14. √ A hard instance : 2 ℓ + 1 grids of dim. ℓ = log n (3,2) V 2l V l (2,1) V 0 (1,0) 1 / 1 8 / 14 ⇐ ? ⇒

  15. Connection with Ruzsa-Szemerédi RS-graph : can be decomposed into n induced matchings. n 2 RS ( n ) is the maximum number of edges in an RS-graph. 1 / 1 9 / 14 ⇐ ? ⇒

  16. (3,2) V 2l V l (2,1) V 0 (1,0) { } G D x 0 z 2 ℓ | y = x + z ∃ Ds . t . | ∪ y G D n 2 and d G ( x , z ) = D y = y | ≥ 2 2 O ( √ log n ) 1 / 1 10 / 14 ⇐ ? ⇒

  17. Converse n Any cst. deg. graph G has hub sets of av. size O ( RS ( n ) 1/7 ) . Idea : use a vertex cover of each G D y (VC ≤ 2 MM). 1 / 1 11 / 14 ⇐ ? ⇒

  18. Connection with SumIndex SumIndex ( n ) = min Encoder max X | M A | + | M B | 1 / 1 12 / 14 ⇐ ? ⇒

  19. (3,2) V 2l V l (2,1) V 0 (1,0) { } G X = G \ y ℓ | X y = 0 , send x = 2 a , L x 0 , z = 2 b , L z 2 ℓ , check d ( x 0 , z 2 ℓ ) . 1 / 1 13 / 14 ⇐ ? ⇒

  20. Thanks 1 / 1 14 / 14 ⇐ ? ⇒

Recommend


More recommend