Substructure from Simulations Can the standard reionization scenario explain the current population of satellite galaxies? (How low does galaxy formation go?) James S. Bullock (UC Irvine)
Tyler Kelley ( UC Irvine ) ( UC Irvine —> Texas )
Star-less halos: How low do we go? 8 l . 0 e t a e l i n g S p r Aquarius m dm ~2.e3 M sun m p =2.e4 M sun m p =2.e5 M sun m p =2.e6 M sun
Star-less halos: How low do we go? 8 l . 0 e t a e l i n g S p r H2 cooling limit H cooling limit Aquarius V~16 km/s V~2 km/s m dm ~2.e3 M sun m p =2.e4 M sun m p =2.e5 M sun m p =2.e6 M sun
How Many Do We See? 4 0 1 l + 2 m e K i m o n - r i s G a r H cooling limit V~16 km/s V~30 km/s ELVIS All MW satellites m p =2.e4 M sun Classical MW satellites m p =2.e5 M sun m p =2.e6 M sun
How Many Do We See? 4 0 1 l + 2 m e K i m o n - r i s G a r Dark substructure? V<8 km/s H cooling limit V~15 km/s V~30 km/s ELVIS All MW satellites m p =2.e4 M sun Classical MW satellites m p =2.e5 M sun m p =2.e6 M sun
1995 “…a photo ionizing background suppresses the formation of galaxies with circular velocities v c <30 km/s …” (T vir ~ 30,000 K)
Naively, this is the suppression scale you would “…a photo ionizing expect from from the ionized IGM temperature…. background suppresses the T IGM ~ 10,000 - 30,000 K formation of galaxies with circular velocities v c <30 km/s …” (T vir ~ 30,000 K) Onorbe et al. 2015
Missing Satellites: 1999 Klypin+ 1999 UMaI Sextans Draco Milky Way Sag LMC Carina SMC Sculptor Fornax Bullock/Geha 100,000 light years Moore et al. 1999; Klypin et al.1999
30 km/s Mismatch sets in V~30 km/s Klypin+ 1999
Bullock+2000 Reionization solves the problem. 30 km/s
V max (km/s) Sawala+2014 4 8 17 30 Galaxies get dark at V max ~20-30 km/s because of reionization. sim particle mass: m baryon ~ 10,000 M sun (Every halo is dark below 8 km/s.) Similar results: Gnedin 2000; Hoeft et al. 2006; Okamoto et al. 2008; Ocvirk et al. 2016 [CoDa simulations]
FIRE simulations of Milky Way Hopkins+2018 Garrison-Kimmel+2018 Wetzel+2017 m baryon ~ 5000 M sun ‘Green flash’ is reionization
Dark Matter 600 kpc Garrison-Kimmel et al. 2018
Stars 600 kpc Garrison-Kimmel et al. 2018
Garrison-Kimmel + 2018 10 zoom simulations of Milky Ways ELVIS on FIRE “…do not exhibit the missing satellites problem…” - subhalos get ‘dark’ at V max <20 km/s
Fitts et al. 2017 12 zoom simulations of field dwarfs m baryon = 500 M sun Reionization suppression: V max ~ 20-25 km/s T vir ~ 20,000 K FIRE simulations
If we take this as the V max (km/s) canonical expectation, 4 8 17 30 what should we see when counting very low- mass dwarfs? Similar results: Gnedin 2000; Sawala+2014 Hoeft et al. 2006; Okamoto et al. 2008; Ocvirk et al. 2016 [CoDa simulations]; Fitts et al. 2017; etc.
~40 ultra-faint satellite galaxies discovered since ‘missing satellites’ “Ultra-faint dwarfs” Milky Way Five-fold increase in last M * ~10 3 -10 5 M sun in 14 yrs Roughy half the sky unexplored to SDSS this depth. Certainly not SDSS DES complete beyond 50 kpc. Willman et al. 2005; Zucker et al. 2006; Belokurov et al. 2007; Koposov et al. 2015a; Bechtol et al. 2015; Kim et al. 2015
Stars 600 kpc Garrison-Kimmel et al. 2018
Dark Matter 600 kpc Garrison-Kimmel et al. 2018
Dark Matter 600 kpc Garrison-Kimmel et al. 2018
FIRE Hydrodynamics (dark matter) 100 kpc Garrison-Kimmel+2017
Baryons Matter (A Lot!) FIRE Hydrodynamics Pure N-Body (dark matter) (same halo) 100 kpc 100 kpc Also: Brooks & Zolotov 2014, Zhu + 2016, Garrison-Kimmel+2017
Baryons Matter (A Lot!) FIRE Hydrodynamics Pure N-Body (dark matter) (same halo) NO substructure (V > 5 km/s) within 20 kpc 100 kpc 100 kpc Also: Brooks & Zolotov 2014, Zhu + 2016, Garrison-Kimmel+2017
Most important Factor is Central Galaxy Potential FIRE Hydrodynamics Pure N-body N-body + Gal. Potential 100 kpc Garrison-Kimmel+2017
Substructure within radii of relevance for known GC stream heating is destroyed… Garrison-Kimmel+2017
Phat ELVIS: M v = 0.8-2 x 10 12 M sun 12 high-resolution zoom simulations with Milky Way potentials evolved to z=0 - 12 identical simulations run with Dark Matter only -
Factor of ~10 reduction in substructure within ~25 kpc N(<R) DMO Galaxy R (kpc) Kelley et al. 2018 Also: Garrison-Kimmel et al. 2018
Preferentially destroy halos with percenters <~ 20 kpc DMO N(<R) DMO Galaxy Galaxy R (kpc) Kelley et al. 2018 Also: Garrison-Kimmel et al. 2018
Radial distribution of Satellites V max > 4.5 km/s N(<R) DMO Galaxy Kelley et al. 2018
Radial distribution of Satellites V peak > 10 km/s N(<R) DMO Galaxy Kelley et al. 2018
Radial distribution of Satellites V peak > 10 km/s 14 ultra-faint dwarfs V peak > 10 km/s T vir ~ 3,800 K w/in 50 kpc known Milky Way satellites N(<R) DMO DMO Galaxy Galaxy
Why are there so many ultra-faint dwarf satellites? Median of Galaxy Required to match : Potential Runs V peak = 8 km/s LOW! T vir ~ 2,400 K NOT atomic cooling halos! sky N(<R) correction MW dwarf satellites Nominal re-ionization scale V max = 20 km/s
Radial Profile: full scatter of 12 Galaxy simulations Graus et al. 2018 V max > 4.5 km/s subhalos (M~5.e6M sun ) known MW 100% scatter dwarfs (12 halos) (no sky coverage correction
Apply fiducial “toy” model of how reionization makes halos dark V max > 4.5 km/s Graus et al. 2018 subhalos T vir ~ 20,000 K 100% scatter (12 halos) 20 km/s
“Observed” to account for coverage incompleteness V max > 4.5 km/s Graus et al. 2018 subhalos 100% scatter T vir ~ 20,000 K (12 halos) 20 km/s Average (<1)
“Observed” to account for coverage incompleteness V max > 4.5 km/s subhalos 100% scatter T vir ~ 5,500 K (12 halos) Average 12 km/s Graus et al. 2018
Threshold mass for galaxy formation is apparently very low… V max > 4.5 km/s > In order to explain known MW subhalos galaxies, we must populate majority subhalos with V peak ~12km/s (T vir ~ 100% scatter 5,500 K). (12 halos) > Median halo in the suite needs even Average lower threshold (V ~ 8 km/s) > Do ultra-faint dwarfs really live in such low-mass halos? Graus et al. 2018
CONCLUSIONS 1. Central galaxy potential destroys most DMO galaxy substructure in the inner ~25 kpc of cosmological ‘zoom’ MW halos. - Must be accounted for when making predictions for stream heating & other substructure probes. 2. In order to account for the ~14 Milky Way dwarf galaxies within 50 kpc, we must populate most subhalos with galaxies down to V peak ~10km/s - This is well below the canonical V peak ~20 km/s scale where reionization was thought to start making galaxies go dark! Kelley et al. 2018 Also below the atomic cooling scale (which is V~16 km/s) - Graus et al. 2018
Garrison-Kimmel+2014
Wheeler+15 FIRE-1 Simulations Classical Ancient stars (ultra-faint) 17 km/s 30 km/s
Kelley et al. 2018
Recommend
More recommend