特定領域研究「ストレンジネスで探るクォーク多体系」理論班主催 「ストレンジクォークを含むクォーク多体系分野の理論的将来を考える」研究会 2009年2月27-28日, 熱海市 ハイパー核反応の今後 原田 融 Harada, Toru 大阪電気通信大学 Osaka Electro-Communication University Neyagawa 572-8530, Osaka, Japan harada@isc.osakac.ac.jp
-これまでにどういう新しい物理を明らか にしてきたか? ・生成のメカニズムとDWIA計算の改良 ・ nucleus potential の性質 原子 v.s.( 反応 ・中性子過剰ハイパー核生成 シグマ混合率 - 今後、どういう新しい展開が期待できる のか? ・2重荷電交換反応によるハイパー核生成! - J-PARCに対して、どういう実験を提 案していくのか?
Momentum transfer to -hyperons 1.20 GeV/c n → spin-stretched states n → q MeV/c Stopped p F 0.6 GeV/c ~ 270 MeV/c N → q MeV/c n → q MeV/c substitutional states
Hypernuclear Production Reactions (K , ) ・反応の特徴を生かす ・ 状態を選択的に励起 720 MeV/c q ~ 60MeV/c “Substitutional” ( ,K ) reactions 0 + + ( ,K ) 1040 MeV/c q ~ 350MeV/c 1f “Spin-Stretched’’ f 7/2 2s 3/2 n 1 [( ) ( ) ] n j n j N J 1d d [ 1 ] j j max N J J 1p 1s (K , ) Stooped K- Lambda q ~ 300MeV/c by R.Hausmann and W.Weise neutron H.Bando, T.Motoba, J.Zofka, Int.J.Mod.Phys. A5(1990)4021
Distorted wave impulse approximation ( DWIA) 核内核子 (陽子・中性子) 観測 / 測定 ( + , K + ) p n K 放出粒子 p 入射粒子 素過程 π + + “n” → K + + p 標的核 Y Double-Differential Cross Sections Strength function 2 d d ( , ) q ( )* ( ) 2 S ( , ) q | | | | ( ) S f U i E E K K dE d d n K f Elementary cross sections (Fermi-averaging) Meson distorted-wave functions (Eikonal approximation ) ( )* ( ) ( ) ˆ ( ) r ( ) r 4 (2 1) ( ) ( ) r L L i j r Y K LM LM L ' l l L 2 1 l ˆ ( ) ( ) ( ) * ( ) ( ) 4 (2 ' 1) ( ; ) ( ; ) ( 0 ' | )( 0 '0| 0) (k ) 2 j r l j k r j k r l l M LM l l L Y ' ' LM 2 1 l l K l M K L ' ll
Optimal Fermi-averaging for the + +n → K + + t-matrix in -hypernuclear production from ( + , K + ) reactions T.H and Y.Hirabayashi, NPA744(2004)323
Quasi-free production spectrum Fermi gas model (K , ) q ~ 60MeV/c R.H.Dalitz, A.Gal, PL64B(1976)154 720 MeV/c =206 MeV elem d d ( , ) R d dE d L L peak position - 28 MeV - 58 MeV 270 MeV /c 14 MeV 2 2 k q ( )(1 ) ( ) F M M U U N 4 N 2 M M M 30 MeV N 174 MeV ( ,K ) q ~ 300MeV/c (K-, ): 2 MeV 1225 MeV/c width ( ,K+,): 56 MeV =245 MeV k q k q F F (K-, ): 14 MeV M M ( ,K+,): 73 MeV 73 MeV C.B. Dover et al., PRC22 (1980) 2073.
spectrum by reaction at 1.20, 1.05GeV/c 12 C ( + ,K + )反応による -QF生成 P.K.Saha et al., KEK-E438, E521 q ~ 400 MeV/c peak width q ~ 380 MeV/c 1.20GeV/c (MeV) (MeV) ~ ~ 1.20GeV/c 1.20GeV/c ~ ~ 1.05GeV/c 1.05GeV/c 1.05GeV/c
Elementary cross sections of → ‐ reactions 1050 T.O.Binford, et al. PR183(1969)1134 800 N(1650)S11 N(1675)D15 0 d N(1710)P11 ( b/sr) N(1720)P13 d 600 LAB 1200 K + 400 p → K + 1200 K + 200 p → K + 0 1000 1200 1400 1600 1800 momentum (MeV/c)
Optimal Fermi-averaging for an elementary t-matrix T. Harada and Y.Hirabayashi, NPA744 (2004) 323. “Optimal” cross section + opt N d k E 2 ˆ ( p opt ; , ) q K K + t p K p 2 (2 ) d v p K p Optimal Fermi-averaged t-Matrix On-shell T-matrix ˆ 2 sin ( ; , ) ( ) d p dp t E p p p ˆ N N N N N opt ( ; , ) q 0 0 Lab t p 2 sin ( ) d p dp p N N N 0 0 * p p N N given * 2 * 2 ( p q ) p “On-energy-shell’’ equation E E m m f i N N N given * p p p p S,A.Gurvitz, PRC33(1986)422: Optimal factorization N K
Optimal cross section of the + +n → K + + reaction in nuclei opt + +n → K + + Cross Section d k E 2 ˆ opt ( , ) K K t E 2 (2 ) d v 1.05 p K 1.20 1.05GeV/c M( + n) 1.20GeV/c
spectrum by reaction at 1.2GeV/c 28 Si KEK-E438 / d d 1d(5/2)h d p 1p(3/2)h 1p(1/2)h S 1s(1/2)h The contribution of deep hole-states is important !
C Reactions • The calculated spectra in QF region can 1.20 GeV/c explain the experimental data at 1.20 and 1.05GeV/c. • The energy-dependence originates from the nature of the “optimal Fermi-averaging” 1.05 GeV/c t-matrix. make the width look narrow opt 2 d d ( , ) q S dE d d n K Strength function “Optimal Fermi-averaging” ˆ ( q opt t-matrix ; , ) well-known well-known t p -nucleus potential Need careful consideration for energy-dependent of the elementary cross section.
Is the -nucleus potential for atoms consistent with the ( , K + ) data? 28 Si T.H and Y.Hirabayashi, NPA759(2005)143 Isospin dependence of -nucleus potentials for N > Z 209 Bi T.H and Y.Hirabayashi, NPA767(2006)206
Observation of n=3 atomic X-ray n=4 RMF n=9 n=10 G. Backenstoss, et al., Z. Phys. A273(1975)137 n=5 C.J. Batty, et al.,Phys.Lett.B 74 (1978) 27 R.J. Powers, et al.,PRC47(1993)1263 n=6 → u Shifts C → u Mg → u → u Al Widths → u Si n=3 → u S n=4 → u Ca n=9 → u Ti → u Ba n=5 n=10 → u W Pb → u n=6 Only 23 measurements !!
‐ -nucleus optical potentials in 27 Al+ ‐ Imag. LDA-NF LDA-NF DD DD-A’ LDA-S3 LDA-S3 Real WS-sh WS-sh RMF RMF t eff ρ teff RMF RMF LDA-NF LDA-S3 LDA-NF DD-A’ LDA-S3 DD teff WS-sh t eff ρ WS-sh Real part Imag. part Real part Imag. part repulsive strong ( 30-40MeV ) (weak) attractive weak ( < 10MeV ) Type I Type II
‐ -nucleus potentials fitted to the ‐ -atomic data DD-A’ Density-dependent (DD) potential C.J.Batty et al., Phys.Rep.287(1997)385 ( ) ( ) r r 2 4 1 ( ) ( ) U b B r b B r 0 0 1 1 (0) (0) m ( ) ( ) ( ) ( ) ( ) ( ) r r r r r r p n n p Relativistic mean-field (RMF) potential J. Mares et al., NPA594(1995)311 RMF Local density approximation (LDA) with YNG-NF LDA-NF D. Halderson, Phys. Rev. C40(1989)2173 Repulsive T.Yamada and Y.Yamamoto, PTP. Suppl. 117(1994)241 J. Dabrowski, Acta Phys. Pol. B31(2001)2179 Local density approximation (LDA) with SAP3 (simulates ND) LDA-S3 T.Harada, in: Proceedings of the 23nd INS Symp. 1995, p.211 Attractive Shallow Woods-Saxon potential : (V 0 ,W 0 )=( - 10, - 9) MeV WS-sh R.S.Hayano, NPA478(1988)113c t eff ρ –type potential ( B 0 = B 1 =0): a 0 =0.36+i0.20 fm t eff ρ C.J.Batty, E.Friedman, A.Gal, PTP. Suppl. 117(1994)227
Strong-shifts and widths on ‐ atoms ‐ 28 Si 28 Si
Recommend
More recommend