toru harada kek j parc
play

Toru Harada /KEK - PowerPoint PPT Presentation

KEK 2017 2017 11 20-22 , Toru Harada /KEK J-PARC


  1. KEK 理論センター研究会「ハドロン・原子核の最前線 2017 」 2017 年 11 月 20-22 日,KEK , つくば市 ハイパー核の物理 原田 融 Toru Harada 大阪電気通信大学 /KEK 理論センター J-PARC 分室 Osaka E.-C. Univ./KEK Theory Center, J-PARC Branch 1

  2. Contents 1. Introduction 2. NN,YN,YY Interaction S= - 1 Hypernuclei 3. • L hypernuclei • ( S hypernuclei ) S= - 2 Hypernuclei 4.  Keywords • X hypernuclei Hyperon mixing • LL hypernuclei + 5. Summary Coupled-channels 2

  3. ハイパー核物理の課題  原子核深部を探る – ハイペロンはパウリ排他律を受けないためプローブ(探針)となる  Impurity Physics (不純物物理) – “ 糊 ” としての役割 – 原子核構造(1粒子運動、殻構造、クラスター構造、集団運動)の変化  Baryon-Baryon Interaction – YN, YY Interaction based on SU f (3) – 核力の統一的理解・斥力芯の起源  “Exotic” Nuclear Physics – ストレンジネスが拓く新しい原子核の面白さ  Neutron Star の構造と進化 – 高密度核物質への戸口 , EOS, 最大質量 , 冷却 , … 3

  4. 3-Dimensional Nuclear Chart with Strangeness 4

  5. Our understanding of hyperon s.p. potentials X S L N +30 MeV Re. X S ? ? 0 ( ) U U L 0 ( ) U 0 ( ) 0 (N) U -3 MeV Im. -14 MeV Re. Re. Im. -30 MeV -30 MeV Re. Strong repulsive, -51 MeV 𝑽 𝟏 ~ −30 MeV 𝑽 𝟏 ~ Spin-isospin dep. 𝑽 𝑴𝑻 ~ 2 MeV ( − 14)฀ (0)MeV ? X width ? 𝑽 𝟏 ~ − 51 MeV 𝑽 𝟏 ~+ 30 MeV LL N 3BF ? LL - X N mixing ? 𝑽 𝑴𝑻 ~ 22 MeV 𝑽 𝑴𝑻 ?, S width ? S mixing Prob.? H-particle ? 5

  6. Neutron star core = “ An interesting neutron-rich hypernuclear system”      ( , , ) x g g i Coupling constant ratio; iY iY iN  0 U L,S,X,.. S  0 U X  0 U S  0 U X K-, ..  0 U S  0 U [F. Weber, PPNP 54(2005)193] X Cassiopeia A nebula [R. Knorren, M. Prakash, P.J.Ellis, PRC52(1995)3470] NASA/CXC/SAO. Hyperon-mixing 6

  7. “Hyperon Puzzle’’ in Massive Neutron Stars シャピロ遅延 (Shapiro delay )  P. B. Demorest et al., Nature, 467 (2010) 1081. PSR J1614-2230 M=(1.97 ± 0.04) M sun (NS:1.97 M ☉ +WD: 0.50 M ☉ ) PSR J0348-0432 M=(2.01 ± 0.04) M sun (NS:2.01 M ☉ +WD: 0.172 M ☉ )  J.Antoniadis et al., Science 340(2013) 6131. → Collapse of massive NS !? With hyperons

  8. Repulsive MBF in “Hyperon Puzzle’’ Y. Yamamoto, et al.,PRC90(2014)045805 3B/4B repulsion NNN+YNN w/o hyp MPa 3B/4B repulsion NNN only ESC RMF w/multibody coupling NLO+3BF NLO NSC97f Haidenbauer, et al. Eur. Phys. J. A53(2017) 121. Julich04 Ohnishi, et al., SCHDM2017 8

  9. J-PAR ARC ( Japan Proton Accelerator Research Complex) 9

  10. NN, YN, YY 相互作用

  11. Hyperon-nucleon (YN) Interaction  One-Boson-Exchange model  Nijmegen potential NHC-D/F  NSC89  NSC97e,f  ESC04a-d  ESC06  ESC08a-c [Th.A. Rijken, M. M. Nagels,Y. Yamamoto, PTPS185(2010)14  Funabashi-Gifu potential [I. Arisaka et al., PTP104(2000)995]  Quark Cluster model  Kyoto-Niigata potential RGM-F  FSS  fss2 [Y. Fujiwara et al, PRC54(1996) 2180; PPNP58 (2007)439]  Chiral LO, NLO Effective Field Theory  Julich potential [H.Polinder, et al., NPA779 (2006) 244;PLB653 (2007) 29] [J.Haidenbauer, et.al., NPA 915(2013)24]  Latice QCD  HAL QCD Collaboration [H. Nemura, et al., PLB 673 (2009) 136; T. Inoue, et al., PTP124 (2010) 591; PRL106 (2011) 162002] 11

  12. NN, , YN YN, , YY YY In Inter teracti actions ons Flavor SU(3) f symmetry symmetric antisymmetric        [8] [8] [27] [10*] [10 ] [8 ] [ 8 ] [1 ] s a 1 S 0 3 S 1 LL NN: 4233 data ( 0<T lab <350 MeV) S= 0 NN NN SN,SN - LN,LN 35 data S= -1 SS,XN - SL - SS,XN - SS - LL S= -2 S= -3 XS,XS - XL XX XX S= -4 C.B. Dover and H. Feshbach, Ann. Phys. 198(1990)321

  13. Short-range repulsive core in baryon-baryon interaction Spin-flavor SU(6) symmetry Quark Cluster Model M.Oka,K.Shimizu,K.Yazaki, PLB130(1983)365; NPA464(1987)700 antisymmetric symmetric Quark-exchange (anti-symmetrized)      [3] [3] [6] [4 2] [51] [33] L =0 orbital x flavor-spin x color singlet Pauli forbidden state S = 0 state [51] [33] LL - X N- SS(I0) , H-dibaryon 1 S N(I=1/2, 1 S 0 ) Pauli forbidden 8 S 1 NN( 1 S 0 ) 4/9 5/9 27 S = 1 state [51] [33] 5/9 4/9 8 A S N(I=3/2, 3 S 1 ) almost Pauli forbidden 1/9 10 8/9 NN( 3 S 1 ), L N- S N(I=1/2, 3 S 1 ) 4/9 5/9 10*  SU(6)sp symm.  Strongly spin-isospin dependence 13

  14. S N threshold cusp state or bound state ( I =1/2, 3 S 1 ) Bound state NSC97f NF ND Cusp state NSC89 14

  15. S N threshold cusp ( I =1/2, 3 S 1 ) H. Machner et al ., NPA 901, 65 (2013). T.H.Tan, PRL23(1969)395. • S= ‐ 1 dibaryon search O.Braun et al., NPB124(1977)45. • YN interaction study D.Eastwood et al.,PRD3(1971)2603. • (K - , p ) reaction study Y. Ichikawa et al., PTEP2014, 101D03 d( p + , K + ) S (1385) S + n K - d → p - L p R.H.Dalitz, Deloff, Czech.J.Phys.B32(1982)1021

  16. Baryon-Baryon force in SU(3) basis from lattice QCD T. Inoue et al., HAL QCD Collaboration, NPA881 (2012) 28.        [8] [8] [27] [8 ] [ 1 ] [10*] [10 ] [ 8 ] s a 1 S 0 [1] [27] [8s] 3 S 1 - 3 D 1 [10] [10*] [8a]  at the SU(3) F limit corresponding to Mπ = MK = 837 MeV.  possibility of a bound H-dibaryon in the limit. 16

  17. Hyperon single-particle potentials from QCD on lattice T. Inoue, et al., (HAL QCD Collaboration), PoS INPC2016, 277 (2016). 17

  18. S = - 1 Hypernuclei (1)

  19. L ハイパー核  L 粒子の1粒子ポテンシャルとスピン軌道力  Gamma-ray spectroscopy of light hypernuclei  ( p + ,K + ) 反応によるハイパー核の生成  Overbinding Problem on s-Shell Hypernuclei  ( e,e’K + ) 反応によるハイパー核の生成 Recent topics  中性子過剰ハイパー核  CSB(Charge Symmetry Breaking)  L ハイパー核の弱崩壊 19

  20. Binding energies of L single-particle states 30 MeV 2  U N 3 A.Gal, E.V. Hungerford, D.J. Millener, Rev.Mod.Phys. 88 (2016) 035004. 0 Woods-Saxon form 208 Pb Λ 0 /(1 exp[(  - + - POTENTIAL ( MeV)  - –10 )/ ]) 1/3 U U r R a 0 ( 1) fm R r A L L –20 r  U L  a  0 1.165fm 30.05 MeV 0.6 fm 0 20 –30 0 2 4 6 8 10 r (fm)

  21. G-matrix calculation in symmetric nuclear matter  - L single-particle potential depth 1 1.35fm k N’ F       +  ( , ) , | ( ) | , U k k k g k k k F L L L L L L F N N N N k Pauli-operator N Q N   +  ( ) N ( ) g v v g  - YN YN YN YN QTQ G-matrix Effects of the L N- S N coupling in nuclear matter Y.Nogami, E.Satoh, NPB19(1970)93 a s = -1.8fm, a t = -1.6fm L N- S N coupled channel L N single channel (unit in MeV) 0 + = N ‘ S S = + + -10 L N L N L N N L L L L N N N N N Spin-isospin saturated -20 Spin-isospin saturated ~ -28 -34.2 -30 Exp. L NN NN Q N v v three-bod body L S L S -40 N , N N , N e S force N -50.6 -52.9 suppressed repulsive Overbinding! -50 21

  22. L single-particle energies in symmetric nuclear matter   - ( , ) 1 U k 1.35fm k OBEP: Nijmegen YN potential Models L L F F G-matrix calc. Scattering length a s -2.54fm -2.10fm -2.70fm -1.90fm -2.29fm -2.78fm -2.51fm a t -1.73fm -1.65fm -1.96fm -1.88fm -1.41fm -1.86fm -1.75fm +4.5 +6.9 +0.9 +0.4 0 -2.1 (unit in MeV) -0.9 -0.2 -3.2 -14.4 -12.8 odd -8.0 -9.2 -12.7 -13.1 -12.3 -13.7 -10.0 -10 1 S 0 -7.4 -14.6 -22.9 -20.7 -26.0 3 S 1 - 3 D 1 -20 -28.1 -23.8 -23.3 -21.4 -21.5 -31.6 NSC89 -25.1 -28 -31.1 -30.8 -30 NHC-F -34.3 -34.0 Exp. NSC97f -35.6 -38.5 NSC97e -40.5 NSC08b -40.8 NSC08a -40 NSC04a NHC-D NSC08c Rijken- Yamamoto et al. Bando- Yamamoto Rijken- 1999 Nagels- Yamamoto Yamamoto 2009 Rijken- 1985 2006 Yamamoto 2016 Y. Yamamoto, H. Bando, PTP.Suppl.81(1985)9; Y. Yamamoto, et al.,PTP.Suppl.117(1994)361; Th.A.Rijken, V.G.J.Stoks, Y.Yamamoto, PRC59(1999)21; Th.A.Rijken, Y.Yamamoto, PRC73(2006) 044008; Y.Yamamoto, T.Motoba, T.A.Rijken, PTP.Suppl.185(2010)72. 22

  23. L s.p. potential and L spin-orbit splitting in 89 L Y V L ? (Exp.) 1.7 MeV H. Hotchi et al., PRC64(2001)044302 V L - 30 MeV 0 A  ( ) a  0.6 fm V L 2 MeV LS WS analysis [O. Hashimoto, T. Tamura, PPNP57(2006)564] Y. Yamamoto et al., PTPS185(2010)72 G-matrix T. Motoba et al., folding model PTPS185(2010)197 SM analysis  L N -1 particle-hole ex.  inter-shell coupling V L 0.2 MeV V L - LS 37.2 MeV 0 A   23 ( )

  24. Gamma-ray spectroscopy of light hypernuclei 44 (-8) 494 (74) E(calc) keV xxx E( LS) keV (xx) 693 (72) (Millener) H. Tamura et al., NPA853(2010)3 507 (65) 504 248 (61) (92) 267 23 153 (56) (-33) (61) 92 (42) Spin-dependence of the effective L N interaction [R.H.Dalitz, A.Gal, AnnPhys.116(1978)167] Microscopic Shell-Model including L N- S N coupling effects A = 7,9 [ D.J.Millener,NPA835(2010)11] A > 9 E13@J-PARC  L N spin-dependent force/ L N- S N coupling force/Charge symmetry breaking ( L p≠ L n)  Magnetic moments m L in a nucleus from B(M1) 4 L He, 10 L B, 11 L B, 19 L F 24

Recommend


More recommend