Stress tensor distribution around static quarks in hot medium Ryosuke Yanagihara (Osaka University) For FlowQCD collaboration : Takumi Iritani, Masakiyo Kitazawa, Masayuki Asakawa, Tetsuo Hatsuda FLQCD 2019 @ YITP (2019/04/18)
Confined vs. Deconfined gluon quark π 0 Critical temperature π π Confined Deconfined 1 FLQCD 2019 @ YITP (2019/04/18)
Confined vs. Deconfined Pressure distribution inside Hadrons gluon Exp. quark Burkert et al ., Nature 557 (2018) 396. Th. ζΈ©εΊ¦ π 0 π π Confined ιιγθΎΌγηΈ Shanahan et al ., PRL 122 (2019) no7, 072003. Kumano et al ., PRD 97 (2018) 014020. 1 FLQCD 2019 @ YITP (2019/04/18)
Pressure distribution inside hadrons vs. Our study Pressure distribution Our study inside Hadrons Exp. ΰ΄€ π π Burkert et al ., Nature 557 (2018) 396. Th. Shanahan et al ., PRL 122 (2019) no7, 072003. Kumano et al ., PRD 97 (2018) 014020. 2 FLQCD 2019 @ YITP (2019/04/18)
Flux tube QCD QED ΰ΄€ π π οΌ Flux tube, squeezed one-dimensionally οΌ Electric field spreads all over the space οΌ Confinement potential οΌ Coulomb potential 3 FLQCD 2019 @ YITP (2019/04/18)
Flux tube QCD QED ΰ΄€ π π οΌ Flux tube, squeezed one-dimensionally οΌ Electric field spreads all over the space οΌ Confinement potential οΌ Coulomb potential Local interaction οΌ Maxwell stress 3 FLQCD 2019 @ YITP (2019/04/18)
π π π¦ π§ mid A lot of previous studies π¨ π π¨ π π π π§π¨ Color electric field Action density Cea et al. , PRD 88 (2012) 054504. Cardoso et al. , PRD 86 (2013) 054501. 4 FLQCD 2019 @ YITP (2019/04/18)
π π π¦ π§ mid A lot of previous studies π¨ π π¨ π π π π§π¨ Color electric field Action density Cea et al. , PRD 88 (2012) 054504. Cardoso et al. , PRD 86 (2013) 054501. More direct physical quantity : Stress tensor !! 4 FLQCD 2019 @ YITP (2019/04/18)
Energy momentum tensor (EMT) Momentum density Energy density π 02 π 03 π 00 π 01 π π π π 12 13 10 11 π ππ = π 20 π 21 π 22 π 23 Pressure π 30 π 31 π 32 π 33 Stress tensor οΌ Stress is force per unit area π π = π ππ π π ; π ππ = βπ ππ Landau and Lifshitz 5 FLQCD 2019 @ YITP (2019/04/18)
Energy momentum tensor (EMT) Momentum density Energy density π 02 π 03 π 00 π 01 π π π π 12 13 10 11 π ππ = π 20 π 21 π 22 π 23 Pressure π 30 π 31 π 32 π 33 Stress tensor οΌ Stress is force per unit area π π = π ππ π π ; π ππ = βπ ππ Landau and Lifshitz rubber 5 FLQCD 2019 @ YITP (2019/04/18)
Maxwell stress π β π ππ + 1 π β π ππ 2 πΉ 2 2 πΆ 2 π ππ = π 0 πΉ π πΉ πΆ π πΆ π 0 πΉ Τ¦ π Τ¦ π οΌ Perpendicular plane: π π < 0 οΌ Parallel plane: π π > 0 οΌ Stress tensor (π) = π π π π (π) π ππ π π Length of arrows = π π (π, π = 1,2,3 ; π = 1,2,3) 6 FLQCD 2019 @ YITP (2019/04/18)
Measurement on the lattice To do β Prepare π ΰ΄€ β‘ Measure EMT around π ΰ΄€ π on the lattice π 7 FLQCD 2019 @ YITP (2019/04/18)
Measurement on the lattice To do β Prepare π ΰ΄€ β‘ Measure EMT around π ΰ΄€ π on the lattice π Confinement potential Wilson Loop β¨π π, π β© = π· 0 exp βπ π π + π· 1 exp βπ 1 π π + β― 1 π π = β lim π logβ¨π π, π β© οΌ quenched SU(3) Yang-Mills πββ οΌ πΎ = 6.600 ( π = 0.038 fm ) Ground state potential 7 FLQCD 2019 @ YITP (2019/04/18)
Measurement on the lattice To do β Prepare π ΰ΄€ β‘ Measure EMT around π ΰ΄€ π on the lattice π Iritani et al . (2018) Gradient flow Flow eq. L α· uscher (2010) ππΆ π π’, π¦ ππ[πΆ] 2 = βπ 0 ππ’ ππΆ π (π’, π¦) πΆ π : smeared field EMT defined via gradient flow Suzuki (2013) Entropy density vs. temperature 1 π ππ π ππ π’, π¦ = π½ π π’ π ππ π’, π¦ + 4π½ πΉ (π’) πΉ π’, π¦ β πΉ π’, π¦ + π(π’) οΌ 2-loop coefficient is now available ! Harlander et al . (2018) 7 FLQCD 2019 @ YITP (2019/04/18)
Set up οΌ Quenched SU(3) Yang-Mills gauge theory οΌ Wilson gauge action οΌ Clover operator 0.92 fm 0.69 fm οΌ Continuum limit 0.46 fm οΌ APE smearing for spatial links οΌ Multihit improvement in temporal links οΌ Simulation using BlueGene/Q @ KEK πΈ Lattice spacing Lattice size # of statistics 48 4 0.057 fm 6.304 140 48 4 0.046 fm 6.465 440 48 4 6.513 0.043 fm 600 48 4 6.600 0.038 fm 1500 64 4 0.029 fm 6.819 1000 8 FLQCD 2019 @ YITP (2019/04/18)
A lattice study of stress distribution around π ΰ΄€ π in vacuum Stress distribution in terms of local interaction FlowQCD, PLB 789 (2019) 210. π¦ mid-plane π§ π¨ π π ΰ΄€ π π π π§π¨ -plane 9 FLQCD 2019 @ YITP (2019/04/18)
π¦ π§ Stress distribution around π ΰ΄€ π mid π¨ FlowQCD, PLB 789 (2019) 210. π π§π¨ οΌ π = 0.029 fm οΌ π’/π 2 = 2.0 οΌ π = 0.69 fm οΌ Length of arrows = π π οΌ Gauge invariant οΌ Local interaction οΌ squeezed 10 FLQCD 2019 @ YITP (2019/04/18)
Stress distribution around π ΰ΄€ π : Cylindrical coordinates π 44 π π π π π¨π¨ π ππ = π π π π π π¨ π ππ π π Diagonalized EMT ΰ΄€ (Cylindrical / Parity symmetry) π π Degeneracy (Maxwell Theory) π 44 = π π¨π¨ = π π π = |π ππ | 11 FLQCD 2019 @ YITP (2019/04/18)
Stress distribution around π ΰ΄€ π¦ π§ π mid π¨ π π Properties in non-Abelian theory π π§π¨ π π¨ οΌ π 44 β π π¨π¨ , π π π β π ππ (Degeneracy) π π οΌ π 44 β π π π (Separation) οΌ Ο π π ππ β 0 (Trace anomaly β 0 ) FlowQCD, PLB 789 (2019) 210. ( Note : after double limit ) 12 FLQCD 2019 @ YITP (2019/04/18)
EMT and confinement potential confinement potential From EMT π π = π + ππ + Ξ€ π π γγγ«ζ°εΌγε ₯εγγΎγγ πΊpot β β ππ(π) π π 2 π¦ π β βπΊstress β ΰΆ± π π¨π¨ π ΰ΄€ ππ mid 13 FLQCD 2019 @ YITP (2019/04/18)
EMT and confinement potential confinement potential From EMT Good agreement !! π π = π + ππ + Ξ€ π π γγγ«ζ°εΌγε ₯εγγΎγγ πΊpot β β ππ(π) π π 2 π¦ π β βπΊstress β ΰΆ± π π¨π¨ π ΰ΄€ ππ mid 13 FLQCD 2019 @ YITP (2019/04/18)
Toward analysis at nonzero temperature Stress distribution around π ΰ΄€ π / π at nonzero temperature οΌ 0 Critical temperature π π π 14 FLQCD 2019 @ YITP (2019/04/18)
Measurement on the lattice To do β Prepare π ΰ΄€ β‘ Measure EMT around π / ΰ΄€ π on the lattice π 15 FLQCD 2019 @ YITP (2019/04/18)
Measurement on the lattice To do β Prepare π ΰ΄€ β‘ Measure EMT around π / ΰ΄€ π on the lattice π Free energy Polyakov Loop ΰ΄€ π π π¦ 4 π¦ Τ¦ π βπΊ π /π = 1 3 Tr Ξ© β Τ¦ π¦ Ξ© ( Τ¦ π§) Color singlet free energy οΌ quenched SU(3) Yang-Mills (We use Coulomb gauge fixing) οΌ πΎ = 6.600 ( π = 0.038 fm ) 15 FLQCD 2019 @ YITP (2019/04/18)
Measurement on the lattice To do β Prepare π ΰ΄€ β‘ Measure EMT around π / ΰ΄€ π on the lattice π Iritani et al . (2018) Gradient flow Flow eq. L α· uscher (2010) ππΆ π π’, π¦ ππ[πΆ] 2 = βπ 0 ππ’ ππΆ π (π’, π¦) πΆ π : smeared field EMT defined via gradient flow Suzuki (2013) Entropy density vs. temperature 1 π ππ π ππ π’, π¦ = π½ π π’ π ππ π’, π¦ + 4π½ πΉ (π’) πΉ π’, π¦ β πΉ π’, π¦ + π(π’) οΌ 2-loop coefficient is now available ! Harlander et al . (2018) 15 FLQCD 2019 @ YITP (2019/04/18)
Set up (quark β anti-quark, single quark) οΌ Quenched SU(3) Yang-Mills gauge theory π ΰ΄€ π οΌ Wilson gauge action οΌ Clover operator οΌ Fixed π, π’ 0.69 fm 0.46 fm οΌ Multihit improvement in temporal links οΌ Simulation using OCTOPUS, Reedbush Lattice Temporal # of πΈ Spatial size πΌ/πΌ π spacing size statistics 48 3 0.038 fm 6.600 12 1.44 640 16 FLQCD 2019 @ YITP (2019/04/18)
Maxwell stress (revisit) π β π ππ + 1 π β π ππ 2 πΉ 2 2 πΆ 2 π ππ = π 0 πΉ π πΉ πΆ π πΆ π 0 πΉ Τ¦ π Τ¦ π οΌ Perpendicular plane: π π < 0 οΌ Parallel plane: π π > 0 οΌ Stress tensor (π) = π π π π (π) π ππ π π Length of arrows = π π (π, π = 1,2,3 ; π = 1,2,3) 6 β FLQCD 2019 @ YITP (2019/04/18)
π¦ π§ Stress distribution around π ΰ΄€ π mid π¨ π π§π¨ Preliminary οΌ singlet οΌ π = 0.038 fm (fixed) οΌ π’/π 2 = 2.0 (fixed) οΌ π = 0.69 fm οΌ Length of arrows = π π 17 FLQCD 2019 @ YITP (2019/04/18)
π¦ π§ Stress distribution around π ΰ΄€ π mid π¨ π π§π¨ Preliminary Critical temperature π π 0 π 18 FLQCD 2019 @ YITP (2019/04/18)
Recommend
More recommend