stress tensor distribution around
play

Stress tensor distribution around static quarks in hot medium - PowerPoint PPT Presentation

Stress tensor distribution around static quarks in hot medium Ryosuke Yanagihara (Osaka University) For FlowQCD collaboration : Takumi Iritani, Masakiyo Kitazawa, Masayuki Asakawa, Tetsuo Hatsuda FLQCD 2019 @ YITP (2019/04/18) Confined vs.


  1. Stress tensor distribution around static quarks in hot medium Ryosuke Yanagihara (Osaka University) For FlowQCD collaboration : Takumi Iritani, Masakiyo Kitazawa, Masayuki Asakawa, Tetsuo Hatsuda FLQCD 2019 @ YITP (2019/04/18)

  2. Confined vs. Deconfined gluon quark π‘ˆ 0 Critical temperature π‘ˆ 𝑑 Confined Deconfined 1 FLQCD 2019 @ YITP (2019/04/18)

  3. Confined vs. Deconfined Pressure distribution inside Hadrons gluon Exp. quark Burkert et al ., Nature 557 (2018) 396. Th. ζΈ©εΊ¦ π‘ˆ 0 π‘ˆ 𝑑 Confined ιžι–‰γ˜θΎΌγ‚η›Έ Shanahan et al ., PRL 122 (2019) no7, 072003. Kumano et al ., PRD 97 (2018) 014020. 1 FLQCD 2019 @ YITP (2019/04/18)

  4. Pressure distribution inside hadrons vs. Our study Pressure distribution Our study inside Hadrons Exp. ΰ΄€ 𝑅 𝑅 Burkert et al ., Nature 557 (2018) 396. Th. Shanahan et al ., PRL 122 (2019) no7, 072003. Kumano et al ., PRD 97 (2018) 014020. 2 FLQCD 2019 @ YITP (2019/04/18)

  5. Flux tube QCD QED ΰ΄€ 𝑅 𝑅 οƒΌ Flux tube, squeezed one-dimensionally οƒΌ Electric field spreads all over the space οƒΌ Confinement potential οƒΌ Coulomb potential 3 FLQCD 2019 @ YITP (2019/04/18)

  6. Flux tube QCD QED ΰ΄€ 𝑅 𝑅 οƒΌ Flux tube, squeezed one-dimensionally οƒΌ Electric field spreads all over the space οƒΌ Confinement potential οƒΌ Coulomb potential Local interaction ? Maxwell stress 3 FLQCD 2019 @ YITP (2019/04/18)

  7. 𝑓 𝑠 𝑦 𝑧 mid A lot of previous studies 𝑨 𝑓 𝑨 𝑓 πœ„ 𝑆 𝑧𝑨 Color electric field Action density Cea et al. , PRD 88 (2012) 054504. Cardoso et al. , PRD 86 (2013) 054501. 4 FLQCD 2019 @ YITP (2019/04/18)

  8. 𝑓 𝑠 𝑦 𝑧 mid A lot of previous studies 𝑨 𝑓 𝑨 𝑓 πœ„ 𝑆 𝑧𝑨 Color electric field Action density Cea et al. , PRD 88 (2012) 054504. Cardoso et al. , PRD 86 (2013) 054501. More direct physical quantity : Stress tensor !! 4 FLQCD 2019 @ YITP (2019/04/18)

  9. Energy momentum tensor (EMT) Momentum density Energy density π‘ˆ 02 π‘ˆ 03 π‘ˆ 00 π‘ˆ 01 π‘ˆ π‘ˆ π‘ˆ π‘ˆ 12 13 10 11 π‘ˆ πœˆπœ‰ = π‘ˆ 20 π‘ˆ 21 π‘ˆ 22 π‘ˆ 23 Pressure π‘ˆ 30 π‘ˆ 31 π‘ˆ 32 π‘ˆ 33 Stress tensor οƒΌ Stress is force per unit area 𝑔 𝑗 = 𝜏 π‘—π‘˜ π‘œ π‘˜ ; 𝜏 π‘—π‘˜ = βˆ’π‘ˆ π‘—π‘˜ Landau and Lifshitz 5 FLQCD 2019 @ YITP (2019/04/18)

  10. Energy momentum tensor (EMT) Momentum density Energy density π‘ˆ 02 π‘ˆ 03 π‘ˆ 00 π‘ˆ 01 π‘ˆ π‘ˆ π‘ˆ π‘ˆ 12 13 10 11 π‘ˆ πœˆπœ‰ = π‘ˆ 20 π‘ˆ 21 π‘ˆ 22 π‘ˆ 23 Pressure π‘ˆ 30 π‘ˆ 31 π‘ˆ 32 π‘ˆ 33 Stress tensor οƒΌ Stress is force per unit area 𝑔 𝑗 = 𝜏 π‘—π‘˜ π‘œ π‘˜ ; 𝜏 π‘—π‘˜ = βˆ’π‘ˆ π‘—π‘˜ Landau and Lifshitz rubber 5 FLQCD 2019 @ YITP (2019/04/18)

  11. Maxwell stress π‘˜ βˆ’ πœ€ π‘—π‘˜ + 1 π‘˜ βˆ’ πœ€ π‘—π‘˜ 2 𝐹 2 2 𝐢 2 π‘ˆ π‘—π‘˜ = πœ— 0 𝐹 𝑗 𝐹 𝐢 𝑗 𝐢 𝜈 0 𝐹 Τ¦ 𝑔 Τ¦ 𝑔 οƒΌ Perpendicular plane: πœ‡ 𝑙 < 0 οƒΌ Parallel plane: πœ‡ 𝑙 > 0 οƒΌ Stress tensor (𝑙) = πœ‡ 𝑙 π‘œ 𝑗 (𝑙) π‘ˆ π‘—π‘˜ π‘œ π‘˜ Length of arrows = πœ‡ 𝑙 (𝑗, π‘˜ = 1,2,3 ; 𝑙 = 1,2,3) 6 FLQCD 2019 @ YITP (2019/04/18)

  12. Measurement on the lattice To do β‘  Prepare 𝑅 ΰ΄€ β‘‘ Measure EMT around 𝑅 ΰ΄€ 𝑅 on the lattice 𝑅 7 FLQCD 2019 @ YITP (2019/04/18)

  13. Measurement on the lattice To do β‘  Prepare 𝑅 ΰ΄€ β‘‘ Measure EMT around 𝑅 ΰ΄€ 𝑅 on the lattice 𝑅 Confinement potential Wilson Loop βŸ¨π‘‹ 𝑆, π‘ˆ ⟩ = 𝐷 0 exp βˆ’π‘Š 𝑆 π‘ˆ + 𝐷 1 exp βˆ’π‘Š 1 𝑆 π‘ˆ + β‹― 1 π‘Š 𝑆 = βˆ’ lim π‘ˆ logβŸ¨π‘‹ 𝑆, π‘ˆ ⟩ οƒΌ quenched SU(3) Yang-Mills π‘ˆβ†’βˆž οƒΌ 𝛾 = 6.600 ( 𝑏 = 0.038 fm ) Ground state potential 7 FLQCD 2019 @ YITP (2019/04/18)

  14. Measurement on the lattice To do β‘  Prepare 𝑅 ΰ΄€ β‘‘ Measure EMT around 𝑅 ΰ΄€ 𝑅 on the lattice 𝑅 Iritani et al . (2018) Gradient flow Flow eq. L ሷ uscher (2010) πœ–πΆ 𝜈 𝑒, 𝑦 πœ€π‘‡[𝐢] 2 = βˆ’π‘• 0 πœ–π‘’ πœ€πΆ 𝜈 (𝑒, 𝑦) 𝐢 𝜈 : smeared field EMT defined via gradient flow Suzuki (2013) Entropy density vs. temperature 1 πœ€ πœˆπœ‰ π‘ˆ πœˆπœ‰ 𝑒, 𝑦 = 𝛽 𝑉 𝑒 𝑉 πœˆπœ‰ 𝑒, 𝑦 + 4𝛽 𝐹 (𝑒) 𝐹 𝑒, 𝑦 βˆ’ 𝐹 𝑒, 𝑦 + 𝑃(𝑒) οƒΌ 2-loop coefficient is now available ! Harlander et al . (2018) 7 FLQCD 2019 @ YITP (2019/04/18)

  15. Set up οƒΌ Quenched SU(3) Yang-Mills gauge theory οƒΌ Wilson gauge action οƒΌ Clover operator 0.92 fm 0.69 fm οƒΌ Continuum limit 0.46 fm οƒΌ APE smearing for spatial links οƒΌ Multihit improvement in temporal links οƒΌ Simulation using BlueGene/Q @ KEK 𝜸 Lattice spacing Lattice size # of statistics 48 4 0.057 fm 6.304 140 48 4 0.046 fm 6.465 440 48 4 6.513 0.043 fm 600 48 4 6.600 0.038 fm 1500 64 4 0.029 fm 6.819 1000 8 FLQCD 2019 @ YITP (2019/04/18)

  16. A lattice study of stress distribution around 𝑅 ΰ΄€ 𝑅 in vacuum Stress distribution in terms of local interaction FlowQCD, PLB 789 (2019) 210. 𝑦 mid-plane 𝑧 𝑨 𝑃 𝑃 ΰ΄€ 𝑅 𝑅 𝑆 𝑧𝑨 -plane 9 FLQCD 2019 @ YITP (2019/04/18)

  17. 𝑦 𝑧 Stress distribution around 𝑅 ΰ΄€ 𝑅 mid 𝑨 FlowQCD, PLB 789 (2019) 210. 𝑆 𝑧𝑨 οƒΌ 𝑏 = 0.029 fm οƒΌ 𝑒/𝑏 2 = 2.0 οƒΌ 𝑆 = 0.69 fm οƒΌ Length of arrows = πœ‡ 𝑙 οƒΌ Gauge invariant οƒΌ Local interaction οƒΌ squeezed 10 FLQCD 2019 @ YITP (2019/04/18)

  18. Stress distribution around 𝑅 ΰ΄€ 𝑅 : Cylindrical coordinates π‘ˆ 44 𝑃 π‘ˆ 𝑓 𝑠 𝑨𝑨 π‘ˆ πœˆπœ‰ = π‘ˆ 𝑃 𝑠𝑠 𝑓 𝑨 π‘ˆ πœ„πœ„ 𝑓 πœ„ Diagonalized EMT ΰ΄€ (Cylindrical / Parity symmetry) 𝑅 𝑅 Degeneracy (Maxwell Theory) π‘ˆ 44 = π‘ˆ 𝑨𝑨 = π‘ˆ 𝑠𝑠 = |π‘ˆ πœ„πœ„ | 11 FLQCD 2019 @ YITP (2019/04/18)

  19. Stress distribution around 𝑅 ΰ΄€ 𝑦 𝑧 𝑅 mid 𝑨 𝑓 𝑠 Properties in non-Abelian theory 𝑆 𝑧𝑨 𝑓 𝑨 οƒΌ π‘ˆ 44 β‰ˆ π‘ˆ 𝑨𝑨 , π‘ˆ 𝑠𝑠 β‰ˆ π‘ˆ πœ„πœ„ (Degeneracy) 𝑓 πœ„ οƒΌ π‘ˆ 44 β‰  π‘ˆ 𝑠𝑠 (Separation) οƒΌ Οƒ 𝜈 π‘ˆ 𝜈𝜈 β‰  0 (Trace anomaly β‰  0 ) FlowQCD, PLB 789 (2019) 210. ( Note : after double limit ) 12 FLQCD 2019 @ YITP (2019/04/18)

  20. EMT and confinement potential confinement potential From EMT π‘Š 𝑆 = 𝑏 + 𝑐𝑆 + Ξ€ 𝑑 𝑆 ここに数式をε…₯εŠ›γ—γΎγ™γ€‚ 𝐺pot ≔ βˆ’ π‘’π‘Š(𝑆) 𝑅 𝑒 2 𝑦 𝜍 ≔ βˆ’πΊstress ≔ ΰΆ± π‘ˆ 𝑨𝑨 𝑅 ΰ΄€ 𝑒𝑆 mid 13 FLQCD 2019 @ YITP (2019/04/18)

  21. EMT and confinement potential confinement potential From EMT Good agreement !! π‘Š 𝑆 = 𝑏 + 𝑐𝑆 + Ξ€ 𝑑 𝑆 ここに数式をε…₯εŠ›γ—γΎγ™γ€‚ 𝐺pot ≔ βˆ’ π‘’π‘Š(𝑆) 𝑅 𝑒 2 𝑦 𝜍 ≔ βˆ’πΊstress ≔ ΰΆ± π‘ˆ 𝑨𝑨 𝑅 ΰ΄€ 𝑒𝑆 mid 13 FLQCD 2019 @ YITP (2019/04/18)

  22. Toward analysis at nonzero temperature Stress distribution around 𝑅 ΰ΄€ 𝑅 / 𝑅 at nonzero temperature ? 0 Critical temperature π‘ˆ π‘ˆ 𝑑 14 FLQCD 2019 @ YITP (2019/04/18)

  23. Measurement on the lattice To do β‘  Prepare 𝑅 ΰ΄€ β‘‘ Measure EMT around 𝑅/ ΰ΄€ 𝑅 on the lattice 𝑅 15 FLQCD 2019 @ YITP (2019/04/18)

  24. Measurement on the lattice To do β‘  Prepare 𝑅 ΰ΄€ β‘‘ Measure EMT around 𝑅/ ΰ΄€ 𝑅 on the lattice 𝑅 Free energy Polyakov Loop ΰ΄€ 𝑅 𝑅 𝑦 4 𝑦 Τ¦ 𝑓 βˆ’πΊ 𝑆 /π‘ˆ = 1 3 Tr Ξ© † Τ¦ 𝑦 Ξ© ( Τ¦ 𝑧) Color singlet free energy οƒΌ quenched SU(3) Yang-Mills (We use Coulomb gauge fixing) οƒΌ 𝛾 = 6.600 ( 𝑏 = 0.038 fm ) 15 FLQCD 2019 @ YITP (2019/04/18)

  25. Measurement on the lattice To do β‘  Prepare 𝑅 ΰ΄€ β‘‘ Measure EMT around 𝑅/ ΰ΄€ 𝑅 on the lattice 𝑅 Iritani et al . (2018) Gradient flow Flow eq. L ሷ uscher (2010) πœ–πΆ 𝜈 𝑒, 𝑦 πœ€π‘‡[𝐢] 2 = βˆ’π‘• 0 πœ–π‘’ πœ€πΆ 𝜈 (𝑒, 𝑦) 𝐢 𝜈 : smeared field EMT defined via gradient flow Suzuki (2013) Entropy density vs. temperature 1 πœ€ πœˆπœ‰ π‘ˆ πœˆπœ‰ 𝑒, 𝑦 = 𝛽 𝑉 𝑒 𝑉 πœˆπœ‰ 𝑒, 𝑦 + 4𝛽 𝐹 (𝑒) 𝐹 𝑒, 𝑦 βˆ’ 𝐹 𝑒, 𝑦 + 𝑃(𝑒) οƒΌ 2-loop coefficient is now available ! Harlander et al . (2018) 15 FLQCD 2019 @ YITP (2019/04/18)

  26. Set up (quark β€” anti-quark, single quark) οƒΌ Quenched SU(3) Yang-Mills gauge theory 𝑅 ΰ΄€ 𝑅 οƒΌ Wilson gauge action οƒΌ Clover operator οƒΌ Fixed 𝑏, 𝑒 0.69 fm 0.46 fm οƒΌ Multihit improvement in temporal links οƒΌ Simulation using OCTOPUS, Reedbush Lattice Temporal # of 𝜸 Spatial size 𝑼/𝑼 𝒅 spacing size statistics 48 3 0.038 fm 6.600 12 1.44 640 16 FLQCD 2019 @ YITP (2019/04/18)

  27. Maxwell stress (revisit) π‘˜ βˆ’ πœ€ π‘—π‘˜ + 1 π‘˜ βˆ’ πœ€ π‘—π‘˜ 2 𝐹 2 2 𝐢 2 π‘ˆ π‘—π‘˜ = πœ— 0 𝐹 𝑗 𝐹 𝐢 𝑗 𝐢 𝜈 0 𝐹 Τ¦ 𝑔 Τ¦ 𝑔 οƒΌ Perpendicular plane: πœ‡ 𝑙 < 0 οƒΌ Parallel plane: πœ‡ 𝑙 > 0 οƒΌ Stress tensor (𝑙) = πœ‡ 𝑙 π‘œ 𝑗 (𝑙) π‘ˆ π‘—π‘˜ π‘œ π‘˜ Length of arrows = πœ‡ 𝑙 (𝑗, π‘˜ = 1,2,3 ; 𝑙 = 1,2,3) 6 ’ FLQCD 2019 @ YITP (2019/04/18)

  28. 𝑦 𝑧 Stress distribution around 𝑅 ΰ΄€ 𝑅 mid 𝑨 𝑆 𝑧𝑨 Preliminary οƒΌ singlet οƒΌ 𝑏 = 0.038 fm (fixed) οƒΌ 𝑒/𝑏 2 = 2.0 (fixed) οƒΌ 𝑆 = 0.69 fm οƒΌ Length of arrows = πœ‡ 𝑙 17 FLQCD 2019 @ YITP (2019/04/18)

  29. 𝑦 𝑧 Stress distribution around 𝑅 ΰ΄€ 𝑅 mid 𝑨 𝑆 𝑧𝑨 Preliminary Critical temperature π‘ˆ π‘ˆ 0 𝑑 18 FLQCD 2019 @ YITP (2019/04/18)

Recommend


More recommend