neutrino reactions in the resonance region
play

Neutrino reactions in the resonance region Toru Sato RCNP,Osaka - PowerPoint PPT Presentation

Neutrino reactions in the resonance region Toru Sato RCNP,Osaka University J-PARC Branch, KEK Theory Center,KEK T. Sato (Osaka U.) N ( , lM ) N Nov. 12 2018 1 / 29 Motivation CP violation in lepton sector, Mass hierarchy ...


  1. Neutrino reactions in the resonance region Toru Sato RCNP,Osaka University J-PARC Branch, KEK Theory Center,KEK T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 1 / 29

  2. Motivation ✞ ☎ CP violation in lepton sector, Mass hierarchy ... ✝ ✆ T2K Run1-8 30 Normal 25 Inverted 20 ln(L) 15 ∆ -2 10 5 0 − − − 3 2 1 0 1 2 3 δ CP T2K Collaboration PRL121(2018) 171802 2 σ confidence interval for δ CP does not contain δ CP = 0 , π T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 2 / 29

  3. Atmospheric Neutrino:Matter effects depends on MH Mass hierarchy with atmospheric neutrinos 5 ➢ Order of neutrino mass eigenstates is not fully known ➢ Propagation in matter modifies oscillation probabilities compared to vacuum, in different ways depending on MH ➢ In particular resonance in muon to electron flavor oscillation NH: ν only - IH: ν only ) cos(zenith) h t P(ν μ → ν e ) Vacuum P(ν μ → ν e ) Matter i n e z ( s o c E ν [GeV^GeV] E ν [GeV^GeV] C. Bronner(Workshop on Shallow and DIS Scattering 2018) T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 3 / 29

  4. Neutrino flux of current and future LBL experiments (T. Katori, M. Martini arXiv 1611.0770) Arbitrary Arbitrary T2K/Hyper-K T2K MicroBooNE/SBND MiniBooNE/SciBooNE MINERvA (ME) MINOS/MINERvA (LE) NOvA DUNE 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 E (GeV) E (GeV) ν ν Neutrino energy of LBL and Atmospheric neutrino experiments ∼ GeV Importance of neutrino reaction in N ∗ , ∆ resonance region in neutrino detection through ν -nucleus reaction. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 4 / 29

  5. CC Neutrino-nucleon reaction (as building block to describe neutrino-nucleus reaction) ν µ n → µ − X (ANL-Osaka model) ν + N → l + N 3 E ν =1GeV d σ /dW[10 -38 cm 2 /GeV] l + N + π 2GeV 3GeV l + N + η 2 l + Y + K l + N + π + π 1 .... l + Y 0 1.2 1.4 1.6 1.8 2 l + N + K W[GeV] .... T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 5 / 29

  6. contents Model of neutrino reaction in resonance region Pion production in ∆(1232) region Pion production in N ∗ , ∆ region Model of axial vector current Summary T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 6 / 29

  7. Models of Neutrino reaction in resonance region model dependence of single pion production Neutrino Generator RES+DIS bg, RES=Rein-Sehgal model Alvarez-Ruso, L. and others, NuSTEC White Paper T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 7 / 29

  8. ∆(1232) region Beyond ∆(1232) region( W < 2 GeV ) Resonane ∆ only several overlaping resonances Non-resonant smaller than Res, Chiral L comparable to Res Channels πN only πN and ππN are comparable ηN, K Λ , K Σ also (MeV) Total cross section of γp T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 8 / 29

  9. ANL-Osaka DCC model Model developed for N ∗ physics: spectrum of nucleon excited states,transition form factors Fock-Space:isobar( N ∗ , ∆ ) , Meson-Baryon ( πN, ηN, K Λ , K Σ , ππN ( π ∆ , ρN, σN ) ) Interaction:isobar excitation and non-resonant meson-baryon interaction Coupled-channel(Lippmann-Schwinger)equation is solved numerically. T = V + V G 0 T The model is constructed by fitting available data on pion, photon, electron induced meson production reaction(two-body final state). (Recent model: H. Kamano,S.X. Nakamura, T.-S. H. Lee, TS, PRC88,035209(2013) the model is extended for neutron and axial vector current. Axial vector current: g NN ∗ from g NN ∗ assuming PCAC and dipole form factor. π A Neutron: H. Kamano,S.X. Nakamura,T.-S. H. Lee,TS, PRC94 015291 (2016) Neutrino:S. X. Nakamura,H. Kamano, TS,PRD92 07402(2015) T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 9 / 29

  10. π 0 , π + electroproduction on proton ( σ T + ϵσ L for W = 1 . 1 − 1 . 68 GeV at Q 2 = 0 . 4( GeV/c ) 2 electromagnetic NN ∗ transition form factors are extracted by analyzing ( e, e ′ π ) . T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 10 / 29

  11. 1 1 0 DCC 𝜏 [10 −38 cm 2 ] DCC 𝜏 [10 −38 cm 2 ] 6 5 4 3 2 1 1.2 0.8 0.1 0.6 0.4 0.2 0 DCC HNV 0 𝜏 [10 −38 cm 2 ] 1.6 1.4 1.2 1 0.05 0.15 1.2 DCC 0.8 0.6 0.4 0.2 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 1.4 0.2 1.6 𝜏 [10 −38 cm 2 ] 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 0.3 0.25 0.8 0.6 0.4 2.5 0.08 0.06 0.04 0.02 0 DCC HNV 𝜏 [10 −38 cm 2 ] 4 3.5 3 2 0.2 1.5 1 0.5 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.1 0.12 0.14 𝜏 [10 −38 cm 2 ] 0.14 0.08 0.06 0.04 0.02 0 DCC HNV 0.16 0.16 1.6 0.12 0.18 0.2 1.4 1.2 1 0.8 0.6 0.4 0.2 0.18 0.1 Neutrino induced pion production in ∆(1232) region 𝜉 𝜈 𝑞 → 𝜈 − 𝑞𝜌 + , 𝑋 𝜌𝑂 < 1.4 GeV 𝜉 𝜈 𝑜 → 𝜈 − 𝑜𝜌 + , 𝑋 𝜌𝑂 < 1.4 GeV 𝜉 𝜈 𝑜 → 𝜈 − 𝑞𝜌 0 , 𝑋 𝜌𝑂 < 1.4 GeV 𝐹 𝜉 [GeV] 𝐹 𝜉 [GeV] 𝐹 𝜉 [GeV] 𝜉 𝜈 𝑞 → 𝜈 − 𝑞𝜌 + , 𝑋 𝜌𝑂 < 2 GeV 𝜉 𝜈 𝑜 → 𝜈 − 𝑜𝜌 + , 𝑋 𝜌𝑂 < 2 GeV 𝜉 𝜈 𝑜 → 𝜈 − 𝑞𝜌 0 , 𝑋 𝜌𝑂 < 2 GeV 𝐹 𝜉 [GeV] 𝐹 𝜉 [GeV] 𝐹 𝜉 [GeV] J. Sobczyk,E. Hernandez,S.X. Nakamura, J. Nieves,T. Sato PRD98(2018)073001 Re-analyzed ANL/BNL data, C. Wilkinson et al. PRD90 ANL-Osaka DCC,PRD92, Hernandez,Nieves,Valverde PRD76 Recently FSI effects( 10 ∼ 30% ) found by S.X.Nakamura et al. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 11 / 29

  12. Angular distribution of pion dσ CC G 2 F W πN 4 πMk 2 [ A ∗ + B ∗ cos ϕ π + C ∗ cos 2 ϕ π + D ∗ sin ϕ π + E ∗ sin 2 ϕ π ] = dW πN dQ 2 d Ω ∗ π * Y φ * X* π k π θ ’ θ * π k’ Z* ��� ��� ��� ��� ��� ��� k q PV: sin ϕ π ∼ k × k ′ · k π angular distribution is sensitive to reaction dynamics. (phase, res. and non-res.) parity violating T-odd angular distributions( D ∗ , E ∗ ): due to final-state-interaction ( D ∗ , E ∗ ) are sensitive to interference among partial waves. In ∆ resonance region, l π ≤ 1 E ∗ ∝ sin 2 θ π sin( δ P 33 − δ P 31 )[ | M V 1+ || E A 1 − | + | M V 1 − | (4 | M A 1+ | + 2 | E A 1+ | )] . M 1+ , E 1+ : p 3 / 2 , M 1 − , E 1 − : p 1 / 2 T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 12 / 29

  13. 120 𝜌 80 100 𝜌 140 160 180 −1 −0.5 0 0.5 1 Nr of events cos 𝜄 ∗ BNL 𝜉 𝜈 𝑞 → 𝜈 − 𝑞𝜌 + 𝜌 HNV HNV1 HNV2 DCC 80 90 100 110 120 130 140 0 50 100 150 200 250 300 350 60 𝜚 ∗ 𝜚 ∗ 0.5 20 25 30 35 40 45 50 55 60 65 −1 −0.5 0 1 Nr of events Nr of events cos 𝜄 ∗ 𝜌 ANL 𝜉 𝜈 𝑞 → 𝜈 − 𝑞𝜌 + 30 35 40 45 50 55 60 0 50 100 150 200 250 300 350 Nr of events Pion angular distribution in ∆(1232) region Flux averaged angular distribution of pion: Comparison with ANL/BNL data dσ/d cos θ π dσ/dϕ π J. E. Sobczyk,E. Hernandez,S.X.Nakamura,J. Nieves, T. Sato, PRD98 073001(2018) T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 13 / 29

  14. Pion production cross section in N ∗ , ∆ region dσ/dW πN of single pion production E ν = 40 GeV Axial 6 6 Vector 4 4 2 2 0 0 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 2 2 1.5 1.5 1 1 0.5 0.5 0 0 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 + + 1 1 P33 S11,D13 0.5 0.5 D15,P13 0 0 1 1.2 1.4 1.6 1.8 2 1 1.2 1.4 1.6 1.8 2 Neutrino anti-neutrino BEBC NP343,285(1990) νp : ∆(1232) νn : ∆(1232) + higher resonance region T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 14 / 29

  15. Pion angular distribution in N ∗ , ∆ region dσ ∫ d Ω π Y ∗ lm dW d Ω π < Y lm > = Data:NPB343 (1990)D. Allasia et al. ∫ dσ d Ω π Y ∗ 00 dW d Ω π νp → µ + pπ − , E ν = 20 GeV ) ANL-Osaka Model (preliminary) ( ¯ dσ = σ 0 + σ c cos ϕ π + σ s sin ϕ π + σ 2 c cos 2 ϕ π + σ 2 s sin 2 ϕ π dWd Ω π Y 10 Re(Y 11 ) Im(Y 11 ) 0.8 0.2 0.2 0.6 0.4 0 0 0.2 0 -0.2 -0.2 -0.2 1 1.4 1.8 1 1.4 1.8 1 1.4 1.8 Y 20 Re(Y 21 ) Im(Y 21 ) Re(Y 22 ) Im(Y 22 ) 0.8 0.2 0.2 0.2 0.2 0.6 0.4 0 0 0 0 0.2 0 -0.2 -0.2 -0.2 -0.2 -0.2 1 1.4 1.8 1 1.4 1.8 1 1.4 1.8 1 1.4 1.8 1 1.4 1.8 Angular distribution depends on W, Q 2 . Need to examine models of neutrino event generators. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 15 / 29

  16. Axial Vector current of ANL-Osaka Model (total cross section) at Q 2 = 0 Axial Vector current F CC 2 DCC model : 1 π dash, a Total solid πN cross section data: 1 π green, a Total brown ( Q 2 = 0) = 2 f 2 F CC π π σ ( π + N ) 2 3 1 0.8 DCC(full) 2 CCn (Q 2 =0) CCp (Q 2 =0) DCC(1pi) 0.6 F 2 0.4 F 2 1 0.2 0 0 1.2 1.4 1.6 1.8 2 1.2 1.4 1.6 1.8 2 W (GeV) W (GeV) Neutron Proton Description of axial vector current at Q 2 = 0 is consistent with pion scattering data. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 16 / 29

  17. Adler’s sum rule ( Q 2 Dependence of axial vector current)preliminary ∫ ∞ 1 = [ g A ( Q 2 )] 2 + [ W A 2 ,n ( ν, Q 2 ) − W A 2 ,p ( ν, Q 2 )] dν ν th W A 2 ,n − W A 2 ,p = 2( W A 2 ,I =1 / 2 − W A 2 ,I =3 / 2 ) / 3 g A ( Q 2 ) : g A = 1 . 27 , M A = 1 . 1 GeV W A 2 ,n/p : DCC model. ν integration: from threshold up to W = 2 GeV N 1.5 Tot 1 0.5 0 -0.5 0 0.02 0.04 0.06 0.08 0.1 Q2(GeV) 2 S.L. Adler,PR143(1965)1144,arXiv:0905.2923, E. A. Paschos, D. Schalla, PRD84(2011),013004. T. Sato (Osaka U.) N ( ν, lM ) N Nov. 12 2018 17 / 29

Recommend


More recommend