gravitational radiation from a binary black hole
play

Gravitational radiation from a binary black hole coalescence in - PowerPoint PPT Presentation

Gravitational radiation from a binary black hole coalescence in Einstein-scalar-Gauss-Bonnet gravity Flix-Louis Juli Johns Hopkins University, Baltimore Groupe Relativit et Objets Compacts Seminar Laboratoire Univers et Thories,


  1. Gravitational radiation from a binary black hole coalescence in Einstein-scalar-Gauss-Bonnet gravity Félix-Louis Julié Johns Hopkins University, Baltimore Groupe Relativité et Objets Compacts Seminar Laboratoire Univers et Théories, Observatoire de Meudon March 5, 2020

  2. Introduction The era of gravitational wave astronomy • GW150914: first observation of a BBH coalescence by LIGO-Virgo • GW170817: first BNS with EM counterparts (multimessenger astronomy) • Since April 2019: third observation run (O3) ongoing… Opportunity of new tests of general relativity and modified gravities , in the strong-field regime of a compact binary merger.

  3. Introduction “Knowing the chirp to hear it”... In general relativity: PN theory, self-force calculations, EOB framework, numerical relativity...

  4. Introduction How to adapt these tools to derive analytical waveforms in modified gravities ? Consider the example of Einstein-scalar-Gauss-Bonnet (ESGB) theories. • Félix-Louis Julié, Emanuele Berti , “Post-Newtonian dynamics and black hole thermodynamics in Einstein-scalar-Gauss-Bonnet gravity,” Phys.Rev. D100 (2019) no.10, 104061 • Marcela Cardenas, Félix-Louis Julié, Nathalie Deruelle , ”Thermodynamics sheds light on black hole dynamics,” Phys. Rev. D97, 12, 124021, 2018. • Félix-Louis Julié , ”Gravitational radiation from compact binary systems in Einstein-Maxwell-dilaton theories,” JCAP 1810, 10, 033, 2018. • Félix-Louis Julié , ”Reducing the two-body problem in scalar-tensor theories to the motion of a test particle: a scalar-tensor e ff ective-one-body approach,” Phys. Rev. D97, 2, 024047, 2018. • Félix-Louis Julié, Nathalie Deruelle , ”Two-body problem in scalar-tensor theories as a deformation of general relativity: an e ff ective-one-body approach,” Phys. Rev. D95, 12, 124054, 2017.

  5. Introduction Einstein-Scalar-Gauss-Bonnet gravity ESGB vacuum action ( G = c = 1) − g ( R − 2 g μν ∂ μ φ ∂ ν φ + α f ( φ ) ℛ 2 GB ) 16 π ∫ d 4 x 1 I ESGB = • Massless scalar field φ • Gauss-Bonnet scalar ℛ 2 GB = R μνρσ R μνρσ − 4 R μν R μν + R 2 • Fundamental coupling with dimensions L 2 and defines the ESGB theory α f ( φ ) ∫ d D x − g ℛ 2 is a boundary term in [Myers 87] • D ⩽ 4 GB Second order field equations g μν R μν =2 ∂ μ φ ∂ ν φ − 4 α ( ) ∇ α ∇ β f ( φ ) P μανβ − 2 P αβ □ φ = − 1 4 α f ′ � ( φ ) ℛ 2 GB with P μνρσ = R μνρσ − 2 g μ [ ρ R σ ] ν + 2 g ν [ ρ R σ ] μ + g μ [ ρ g σ ] ν R

  6. Introduction Hairy black holes in ESGB gravity Analytical solutions in the small Gauss-Bonnet coupling limit α • Einstein-dilaton-Gauss-Bonnet, f ( φ ) = e φ Mignemi-Stewart 93 at 𝒫 ( α 2 ) , Maeda at al. 97 at , Yunes-Stein 11 at 𝒫 ( α ) 𝒫 ( α ) 𝒫 ( α 2 , S 2 ) 𝒫 ( α 2 , S 2 ) 𝒫 ( α 7 , S 5 ) Ayzenberg-Yunes 14 at , Pani et al. 11 at , Maselli et al. 15 at • Shift-symmetric theories, f ( φ ) = φ Sotiriou-Zhou 14 at 𝒫 ( α 2 ) • Generic ESGB theories Julié-Berti 19 at 𝒫 ( α 4 ) Numerical solutions • Einstein-dilaton-Gauss-Bonnet, f ( φ ) = e φ Kanti et al. 95 , Pani-Cardoso 09 , Kleihaus 15 (includes spins) • Shift-symmetric theories, f ( φ ) = φ Delgado et al. 20 (includes spin) • Generic ESGB theories Antoniou et al. 18 f ( φ ) = − e − λφ 2 • Quadratic couplings, f ( φ ) = φ 2 (1 + λφ 2 ) and Doneva-Yazadjiev 17 , Silva et al. 17, Minamitsuji-Ikeda 18, Macedo et al. 19, etc… How to address (analytically) the motion and gravitational radiation of two coalescing ESGB black holes? See also Yagi et al. 12 ; and Witek et al. 19 , Okounkova 20 for a numerical relativity analysis.

  7. 1. ESGB black holes and their thermodynamics 2. The post-newtonian (PN) dynamics of an ESGB black hole binary 3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary 4. Gravitational radiation from an ESGB black hole binary

  8. 1. ESGB black holes and their thermodynamics Static, spherically symmetric ESGB black holes Just coordinate system ds 2 = − A ( r ) dt 2 + dr 2 A ( r ) + B ( r ) r 2 ( d θ 2 + sin 2 θ d ϕ 2 ) ϵ = α f ′ � ( φ ∞ ) Solve iteratively the field equations around a Schwarzschild spacetime with ≪ 1 m 2 r + ∑ B ( r ) = 1 + ∑ φ ( r ) = φ ∞ + ∑ A ( r ) = 1 − 2 m ϵ i A i ( r ) , ϵ i B i ( r ) , ϵ i φ i ( r ) i i i g μν R μν =2 ∂ μ φ ∂ ν φ − 4 α ( ) ∇ α ∇ β f ( φ ) P μανβ − 2 P αβ □ φ = − 1 4 α f ′ � ( φ ) ℛ 2 GB with ℛ 2 GB = R μνρσ R μνρσ − 4 R μν R μν + R 2 ESGB black hole, at leading order for simplicity: r + 𝒫 ( B = 1 + 𝒫 ( r 3 ) + 𝒫 ( ( 2 2 2 m 2 ) m 2 ) 2 r + m 2 2 r 2 + 2 m 3 m 2 ) α f ′ � α f ′ � φ = φ ∞ + α f ′ � ( φ ∞ ) α f ′ � A = 1 − 2 m m ∞ ∞ ∞ , , m 2 Two integration constants: and , at all orders in the Gauss-Bonnet coupling. m φ ∞

  9. 1. ESGB black holes and their thermodynamics Introduction ESGB black hole thermodynamics • Temperature: T = κ κ 2 = − 1 where 2 ( ∇ μ ξ ν ∇ μ ξ ν ) r H is the surface gravity 4 π • Wald entropy: ∂ℒ S w = − 8 π ∫ r H with d θ d ϕ σ ϵ μν ϵ ρσ ϵ μν = n [ μ l ν ] ∂ R μνρσ S w = 𝒝 H in ESGB gravity. + 4 απ f ( φ H ) 4 • Mass as a global charge: r + 𝒫 ( M = m + ∫ D d φ ∞ r 2 ) φ = φ ∞ + D 1 is the scalar “charge” defined as D [Henneaux et al. 02, Cardenas et al. 16, Anabalon-Deruelle-FLJ 16,…] The quantities above are calculated in terms of and . At leading order for simplicity: m φ ∞ T = 8 π m [ 1 + 𝒫 ( + 𝒫 ( [ 1 + 𝒫 ( ] [ 1 + α f ( φ ∞ ) ] m 2 ) ] 2 2 m 2 ) m 2 ) α f ′ � α f ′ � D = α f ′ � ( φ ∞ ) α f ′ � ∞ ∞ ∞ , S w = 4 π m 2 , m 2 2 m The variations of and with respect to and are such that: S w M m φ ∞ T δ S w = δ M

  10. 1. ESGB black holes and their thermodynamics 2. The post-newtonian (PN) dynamics of an ESGB black hole binary 3. Beyond the PN approximation: “EOBization” of an ESGB black hole binary 4. Gravitational radiation from an ESGB black hole binary

  11. 2. The post-newtonian (PN) dynamics of an ESGB black hole binary “Skeletonizing” an ESGB black hole [in GR: Mathisson 1931, Infeld 1950,...] − g ( R − 2 g μν ∂ μ φ ∂ ν φ + α f ( φ ) ℛ 2 GB ) + I A 16 π ∫ d 4 x 1 I ESGB = pp Generic ansatz for compact bodies A ] = − ∫ m A ( φ ) ds A pp [ g μν , φ , x μ I A − g μν dx μ with A dx ν . ds A = A is a function of the local value of to encompass the e ff ect of the background scalar • m A ( φ ) φ field on the equilibrium of a body [Eardley 75, Damour-Esposito-Farèse 92]. • Strong equivalence principle violation Question: How to derive for an ESGB black hole? m A ( φ ) Answer: by identifying the BH's fields to those sourced by the particle.

  12. 2. The post-newtonian (PN) dynamics of an ESGB black hole binary Comparing the asymptotic expansions of the fields R μν = 2 ∂ μ φ ∂ ν φ − 4 α ( P μανβ − 1 2 g μν P αβ ) ∇ α ∇ β f ( φ ) + 8 π ( T A ) μν − 1 2 g μν T A δ (3) ( x − x A ( t )) □ φ = − 1 GB + 4 π ds A dm A 4 α f ′ � ( φ ) ℛ 2 dt d φ − g dx μ A = m A ( φ ) δ (3) ( x − x A ( t )) dx ν A A with T μν dt dt dx β dx α A A gg αβ dt dt Fields of particle A in its rest frame, x i Fields of the ESGB black hole A = 0 ) + 𝒫 ( r ) + 𝒫 ( g μν = η μν + δ μν ( g μν = η μν + δ μν ( r 2 ) r 2 ) 2 m A ( φ ∞ ) 1 2 m 1 r ˜ ˜ ˜ ˜ d φ ( φ ∞ ) + 𝒫 ( r + 𝒫 ( r 2 ) r 2 ) dm A φ = φ ∞ − 1 1 φ = φ ∞ + D 1 r ˜ ˜ ˜ ˜

  13. 
 2. The post-newtonian (PN) dynamics of an ESGB black hole binary Matching • the identification yields Matching conditions m A ( φ ∞ ) = m m ′ � A ( φ ∞ ) = − D • For an ESGB black hole with “secondary hair” , yields a first order di ff erential equation. D = D ( m , φ ∞ ) At leading order, for simplicity: 1 + 𝒫 ( A ) dm A d φ + α f ′ � ( φ ) α f ′ � = 0 m 2 2 m A ( φ ) • Its resolution involves a unique integration constant . μ A

  14. 2. The post-newtonian (PN) dynamics of an ESGB black hole binary The sensitivity of a hairy ESGB black hole A ] = − ∫ m A ( φ ) ds A pp [ g μν , φ , x μ I A • In an arbitrary ESGB theory , BHs are described by a unique constant parameter: m A ( φ ) = μ A ( 1 − α f ( φ ) + ⋯ ) S w where μ A = M irr = 2 μ 2 4 π A • Recall: ESGB first law of thermodynamics: T δ S w = δ M where . δ M = δ m + D δφ ∞ Matching conditions (a) and (b) ⇒ δ M = 0 (a) m A ( φ ∞ ) = m As a consequence, δ S w = 0 (b) m ′ � A ( φ ∞ ) = − D When varies slowly, the black hole readjusts its equilibrium configuration, i.e. , φ ∞ m in keeping its Wald entropy fixed.

Recommend


More recommend