giant planet formation and migration scenarios
play

Giant Planet Formation and Migration Scenarios Christophe - PowerPoint PPT Presentation

R. Dawson, OHP, 10/09/15 Giant Planet Formation and Migration Scenarios Christophe Carreau/ESA Rebekah (Bekki) Dawson (University of California, Berkeley Miller Fellow; > Penn State) Center for Exoplanets and Habitable Worlds R.


  1. R. Dawson, OHP, 10/09/15 Giant Planet Formation and Migration Scenarios Christophe Carreau/ESA Rebekah (Bekki) Dawson (University of California, Berkeley Miller Fellow; —> Penn State) Center for Exoplanets and Habitable Worlds

  2. R. Dawson, OHP, 10/09/15 Giant Planet Formation and Migration Scenarios Christophe Carreau/ESA Rebekah (Bekki) Dawson (University of California, Berkeley Miller Fellow; —> Penn State) Center for Exoplanets and Habitable Worlds

  3. R. Dawson, OHP, 10/09/15 Giant planet formation and migration on the eve of 51 Peg b (B.b.) Formation of Jupiter by core accretion Migration of Neptune 100 Neptune Pluto t=0 solid surface density 10 gcm -2 solid surface density 7 gcm -2 10 1 t=present Neptune 3/2 2/1 0.1 1.0 10.0 Sun t (Myr) Pollack+ 93, 96 
 Malhotra 93, 95 
 (adapted for clarity) (adapted for clarity)

  4. R. Dawson, OHP, 10/09/15 Open questions B.b. • What proto-planetary disk conditions enable the formation of giant planets? • What mechanism(s) drives giant planet migration? • How do giant planets imprint their migration history on smaller bodies?

  5. R. Dawson, OHP, 10/09/15 A few recommended reviews relevant to giant planet formation, migration, and orbital evolution • “Disk-Planet Interactions During Planet Formation,” Papaloizou+06, PPV • “Theories of Planet Formation: Future Prospects,” Lissauer+06, PPV • “Forming Planetesimals in Solar and Extrasolar Nebulae,” Chiang & Youdin 10, AREPS • “The Long-Term Dynamical Evolution of Planetary Systems,” Davies + 14, PPVI • “Planet Population Synthesis,” Benz+14, PPVI • “The Occurrence and Architecture of Exoplanetary Systems,” Winn & Fabrycky 15, ARAA

  6. R. Dawson, OHP, 10/09/15 Open questions B.b. • What proto-planetary disk conditions enable the formation of giant planets? • What mechanism(s) drives giant planet migration? • How do giant planets imprint their migration history on smaller bodies?

  7. R. Dawson, OHP, 10/09/15 Exoplanet surveys reveal where giant planets form or migrate incomplete observed RV, exoplanets.org, Wright+11, complete-ish inferred, direct imaging, Brandt+14 0.01 0.10 1.00 10.00 100. 0.010 0.008 0.006 dN 0.004 0.002 0.000 0.01 0.01 0.10 0.10 1.00 1.00 10.00 10.00 100. 100. a (AU) RV, msini > 0.3 MJup

  8. dN/da R. Dawson, OHP, 10/09/15 = 0 (b) t = 1 . 0 Ormel+ 14 Boley 09 ( ( + FORMATION core accretion gravitational instability e.g., Pollack+ 96, Hubickyj+05 e.g., Boss+ 97, Mayer+02 Malik+ 15 * MIGRATION e.g., Lin+96, Alibert+05, Rasio (disk and/or tidal) & Ford 96, Wu & Murray 03

  9. dN/da R. Dawson, OHP, 10/09/15 = 0 (b) t = 1 . 0 Ormel+ 14 Boley 09 ( ( + FORMATION core accretion gravitational instability e.g., Pollack+ 96, Hubickyj+05 e.g., Boss+ 97, Mayer+02 Malik+ 15 * MIGRATION e.g., Lin+96, Alibert+05, Rasio (disk and/or tidal) & Ford 96, Wu & Murray 03

  10. R. Dawson, OHP, 10/09/15 Core accretion: build the core, accrete gas

  11. R. Dawson, OHP, 10/09/15 Run away gas accretion can be independent of semi-major axis Piso, Youdin, & Murray-Clay 2015 20 Lee, Chiang, & Ormel 2014 Z = Z � Z-gradient 15 Z = 20 Z � t run (Myr) Z = 16 Z � 10 t disk , slow 5 Z = 2 Z � 0 0.1 1.0 5.0 a (AU) Inner disk, 10 Earth mass core Outer disk, 4 Earth mass core

  12. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis

  13. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis High solid surface density Formation Timescale (Myr) 100.00 Isolation Mass (Earth) 10 4 s s a m Core too small e r o c 10.00 10 2 timescale 10 0 Timescale 1.00 too long 10 -2 0.10 10 -4 0.01 0.01 0.10 1.00 10.00 100. a (AU) surface density profile power law -3/2

  14. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis

  15. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis Low solid surface density Formation Timescale (Myr) 100.00 Isolation Mass (Earth) 10 4 Core too small 10.00 10 2 timescale 10 0 Timescale 1.00 s s a m e r o c too long 10 -2 0.10 10 -4 0.01 0.01 0.01 0.01 0.10 1.00 10.00 100. a (AU) surface density profile power law -3/2

  16. R. Dawson, OHP, 10/09/15 Building the core depends on solid surface density, semi-major axis High solid surface density Formation Timescale (Myr) 100.00 Isolation Mass (Earth) 10 4 s s a m Core too small e r o c 10.00 10 2 timescale 10 0 Timescale 1.00 too long 10 -2 0.10 Giant-planet 10 -4 metallicity correlation, e.g. Santos+01,04, 0.01 Fischer & Valenti 05 0.01 0.10 1.00 10.00 100. a (AU) surface density profile power law -3/2

  17. R. Dawson, OHP, 10/09/15 Thus from core accretion alone, we expect giant planets in a limited range of semi-major axes 0.01 0.10 1.00 10.00 100. 0.010 Timescale Core too small 0.008 too long 0.006 dN 0.004 0.002 0.000 0.01 0.01 0.10 0.10 1.00 1.00 10.00 10.00 100. 100. a (AU) msini > 0.3 MJup

  18. R. Dawson, OHP, 10/09/15 Instead, we see close-in and widely-separated Jupiters too observed RV, exolanets.org incomplete inferred, direct imaging, Brandt+14 0.01 0.10 1.00 10.00 100. 0.010 Timescale Core too small 0.008 too long 0.006 dN 0.004 0.002 0.000 0.01 0.01 0.10 0.10 1.00 1.00 10.00 10.00 100. 100. 50 AU 70 AU a (AU) 0.05 AU msini > 0.3 MJup Marois+ 08

  19. dN/da R. Dawson, OHP, 10/09/15 = 0 (b) t = 1 . 0 Ormel+ 14 Boley 09 ( ( + FORMATION core accretion gravitational instability e.g., Pollack+ 96, Hubickyj+05 e.g., Boss+ 97, Mayer+02 Malik+ 15 * MIGRATION e.g., Lin+96, Alibert+05, Rasio (disk and/or tidal) & Ford 96, Wu & Murray 03

  20. R. Dawson, OHP, 10/09/15 Solutions for forming/placing planets at wide separations tell us about disk properties Solution Disk requirements cm particles 0 (b) t = 1 . 0 Pebble accretion: enhance concentrated in the growth cross section midplane (e.g., Lambrechts & Johansen 12) Cold disk, fragmentation Formation via gravitational at end of disk lifetime instability (e.g., Kratter, Murray-Clay, & Youdin 10) Low viscosity, small scale Outward migration with 2+ height giant planets in resonance (e.g., Crida+ 09)

  21. R. Dawson, OHP, 10/09/15 Solutions for forming/placing hot Jupiters tell us about disk properties Solution Disk requirements Delivery of solids/ 0 (b) t = 1 . 0 Enhance solid surface planetesimals/cores to density by 10-100 inner disk (Discussion for super-E*rths: Lee+14, Schlichting 14) Formation via gravitational Unbound disk (Unlikely; instability Rafikov 2006) Disk properties for fast migration (viscosity, thermal/ Inward migration (e.g. Lin+ 96) entropy profile, etc.) (or tides); see Papaloizou+ 06 review

  22. R. Dawson, OHP, 10/09/15 Open questions B.b. Open questions B.b. • What proto-planetary disk conditions enable the formation of giant planets? • What mechanism drives giant planet migration? • How do giant planets imprint their migration history on other bodies?

  23. R. Dawson, OHP, 10/09/15 Open questions B.b. Open questions B.b. • What proto-planetary disk conditions enable the formation of giant planets? • What mechanism drives giant planet migration? • How do giant planets imprint their migration history on other bodies?

  24. R. Dawson, OHP, 10/09/15 Two types of giant planet migration 1. Disk migration 2. High eccentricity tidal migration gas e.g. Goldreich & Tremaine 1980 e.g. Hut 1981 applied to 51 Peg b by Lin+ 96 applied to 51 Peg b by Rasio & Ford 96 high eccentricity excited by planetary or binary companion

  25. R. Dawson, OHP, 10/09/15 Perturbations from a companion cause high eccentricity migration Planet-planet scattering e.g. Rasio & Ford 96, Chatterjee+ 08, Ford & Rasio 08, Matsumura+ 12, Beauge and Nesvory 12, Boley+ 12 Stellar or planetary Kozai e.g. Wu and Murray 03, Fabrycky & Tremaine 07, Secular chaos Wu and Lithwick 11 Naoz+11, 12

  26. R. Dawson, OHP, 10/09/15 Two types of giant planet migration 1. Disk migration 2. High eccentricity tidal migration gas e.g. Goldreich & Tremaine 1980 e.g. Hut 1981 applied to 51 Peg b by Lin+ 96 applied to 51 Peg b by Rasio & Ford 96 high eccentricity excited by planetary or binary companion

  27. R. Dawson, OHP, 10/09/15 Migration tests • Spin orbit alignments (OHP: Hirano; Morton & Johnson 10, Naoz+ 12)

  28. R. Dawson, OHP, 10/09/15 Hot Jupiter migration test 1: spin-orbit alignments 1. Disk migration 2. High eccentricity tidal migration Aligned Misaligned

  29. R. Dawson, OHP, 10/09/15 Hot Jupiter migration test 1: spin-orbit alignments 1. Disk migration 2. High eccentricity tidal migration Aligned Misaligned Misalignment of entire system: e.g., Rogers+ 12 (star), Batygin 12, Fielding+ 15 (disk), Mazeh+ 15 (flat systems)

  30. R. Dawson, OHP, 10/09/15 Hot Jupiter migration test 1: spin-orbit alignments 1. Disk migration 2. High eccentricity tidal migration Aligned Misaligned Coplanar high-eccentricity Misalignment of entire system: migration e.g., Rogers+ 12 (star), Batygin (e.g., Li+14, Petrovich 15) 12, Fielding+ 15 (disk), Mazeh+ Tidal realignment (e.g., Winn+ 10, 15 (flat systems) Albrecht+12; many theory papers incl. RID 14)

Recommend


More recommend