gestural input effects on the spectral envelope of violin
play

Gestural input effects on the spectral envelope of violin sounds - PowerPoint PPT Presentation

Gestural input effects on the spectral envelope of violin sounds Quim Llimona MUMT 605 Final Project December 18th, 2015 Background: MUSMAP Background: MUSMAP Background: MUSMAP What does a violin note look like? 0.1 0.02 Waveform


  1. Gestural input effects 
 on the spectral envelope 
 of violin sounds Quim Llimona MUMT 605 Final Project December 18th, 2015

  2. Background: MUSMAP

  3. Background: MUSMAP

  4. Background: MUSMAP

  5. What does a violin note look like? 0.1 0.02 Waveform Waveform 0 0 − 0.02 − 0.1 − 0.04 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 20 20 15 Spectrogram 15 Spectrogram 10 10 5 5 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 0.4 Bow velocity Bow velocity 0.5 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 0.5 Bow force Bow force 0.45 0.5 0.4 0.35 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

  6. What does a violin note look like? 0.1 0.02 Waveform Waveform 0 0 − 0.02 − 0.1 − 0.04 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 20 20 15 Spectrogram 15 Spectrogram 10 10 5 5 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 0.4 Bow velocity Bow velocity 0.5 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 0.5 Bow force Bow force 0.45 0.5 0.4 0.35 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

  7. Spectral envelope extraction: LPC LPC (p=8) LPC (p=16) 40 40 20 20 Power (dB) Power (dB) 0 0 − 20 − 20 − 40 − 40 − 60 − 60 − 80 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10 LPC (p=32) LPC (p=64) 40 40 20 20 Power (dB) Power (dB) 0 0 − 20 − 20 − 40 − 40 − 60 − 60 − 80 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10

  8. Spectral envelope extraction: PEAKPICK 40 20 0 Magnitude (dB) − 20 − 40 − 60 − 80 0 0.5 1 1.5 2 Frequency (Hz) 4 x 10

  9. Spectral envelope extraction: MAXPOOL 40 40 MAXPOOL (n=218) MAXPOOL (n=72) 20 20 Power (dB) Power (dB) 0 0 − 20 − 20 − 40 − 40 − 60 − 60 − 80 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10 40 40 MAXPOOL (n=55) MAXPOOL (n=22) 20 20 Power (dB) Power (dB) 0 0 − 20 − 20 − 40 − 40 − 60 − 60 − 80 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10

  10. Spectral whitening 
 Admittance deconvolution Deconvolved Raw 80 40 60 20 40 0 Power (dB) Power (dB) 20 − 20 0 − 40 − 20 − 60 − 40 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10

  11. Spectral whitening Data-driven normalization 20 20 Magnitude (dB) Magnitude (dB) 0 0 − 20 − 20 − 40 − 40 Original Original Whitened Whitened − 60 − 60 3 4 3 4 10 10 10 10 Frequency (Hz) Frequency (Hz) 20 20 Magnitude (dB) Magnitude (dB) 0 0 − 20 − 20 − 40 − 40 Original Original Whitened Whitened − 60 − 60 3 4 3 4 10 10 10 10 Frequency (Hz) Frequency (Hz)

  12. Mean bow force Mean bow velocity Mean bow bridge distance 15 20 15 15 10 10 10 5 5 5 0 0 0 0.2 0.4 0.6 0.8 1 1.2 0.4 0.6 0.8 1 1.2 1.4 20 30 40 50 9267 9267 9267 Frequency (Hz) Frequency (Hz) Frequency (Hz) 3552 3552 3552 1361 1361 1361 522 522 522 200 200 200 0.0 0.2 9 Original Original Original 9267 9267 9267 Frequency (Hz) Frequency (Hz) Frequency (Hz) 3552 3552 3552 1361 1361 1361 522 522 522 200 200 200 0.0 0.2 9 Deconvolved Deconvolved Deconvolved

  13. Learn convolutive templates through Non-Negative Matrix Factorization ( NMF ) on the log-spectrum (where chained filters are additive) 1 0.8 0.6 0.4 0.2 0 3 4 10 10 Frequency (Hz)

  14. Distribution of NMF activations

  15. Distribution of NMF activations

  16. Distribution of NMF activations

  17. Ratio and sum of NMF activations

  18. Thanks! Quim Llimona MUMT 605 Final Project December 18th, 2015

Recommend


More recommend