Gestural input effects on the spectral envelope of violin sounds Quim Llimona MUMT 605 Final Project December 18th, 2015
Background: MUSMAP
Background: MUSMAP
Background: MUSMAP
What does a violin note look like? 0.1 0.02 Waveform Waveform 0 0 − 0.02 − 0.1 − 0.04 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 20 20 15 Spectrogram 15 Spectrogram 10 10 5 5 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 0.4 Bow velocity Bow velocity 0.5 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 0.5 Bow force Bow force 0.45 0.5 0.4 0.35 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
What does a violin note look like? 0.1 0.02 Waveform Waveform 0 0 − 0.02 − 0.1 − 0.04 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 20 20 15 Spectrogram 15 Spectrogram 10 10 5 5 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 0.4 Bow velocity Bow velocity 0.5 0.2 0 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 1 0.5 Bow force Bow force 0.45 0.5 0.4 0.35 0 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Spectral envelope extraction: LPC LPC (p=8) LPC (p=16) 40 40 20 20 Power (dB) Power (dB) 0 0 − 20 − 20 − 40 − 40 − 60 − 60 − 80 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10 LPC (p=32) LPC (p=64) 40 40 20 20 Power (dB) Power (dB) 0 0 − 20 − 20 − 40 − 40 − 60 − 60 − 80 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10
Spectral envelope extraction: PEAKPICK 40 20 0 Magnitude (dB) − 20 − 40 − 60 − 80 0 0.5 1 1.5 2 Frequency (Hz) 4 x 10
Spectral envelope extraction: MAXPOOL 40 40 MAXPOOL (n=218) MAXPOOL (n=72) 20 20 Power (dB) Power (dB) 0 0 − 20 − 20 − 40 − 40 − 60 − 60 − 80 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10 40 40 MAXPOOL (n=55) MAXPOOL (n=22) 20 20 Power (dB) Power (dB) 0 0 − 20 − 20 − 40 − 40 − 60 − 60 − 80 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10
Spectral whitening Admittance deconvolution Deconvolved Raw 80 40 60 20 40 0 Power (dB) Power (dB) 20 − 20 0 − 40 − 20 − 60 − 40 − 80 0 0.5 1 1.5 2 0 0.5 1 1.5 2 Frequency (Hz) Frequency (Hz) 4 4 x 10 x 10
Spectral whitening Data-driven normalization 20 20 Magnitude (dB) Magnitude (dB) 0 0 − 20 − 20 − 40 − 40 Original Original Whitened Whitened − 60 − 60 3 4 3 4 10 10 10 10 Frequency (Hz) Frequency (Hz) 20 20 Magnitude (dB) Magnitude (dB) 0 0 − 20 − 20 − 40 − 40 Original Original Whitened Whitened − 60 − 60 3 4 3 4 10 10 10 10 Frequency (Hz) Frequency (Hz)
Mean bow force Mean bow velocity Mean bow bridge distance 15 20 15 15 10 10 10 5 5 5 0 0 0 0.2 0.4 0.6 0.8 1 1.2 0.4 0.6 0.8 1 1.2 1.4 20 30 40 50 9267 9267 9267 Frequency (Hz) Frequency (Hz) Frequency (Hz) 3552 3552 3552 1361 1361 1361 522 522 522 200 200 200 0.0 0.2 9 Original Original Original 9267 9267 9267 Frequency (Hz) Frequency (Hz) Frequency (Hz) 3552 3552 3552 1361 1361 1361 522 522 522 200 200 200 0.0 0.2 9 Deconvolved Deconvolved Deconvolved
Learn convolutive templates through Non-Negative Matrix Factorization ( NMF ) on the log-spectrum (where chained filters are additive) 1 0.8 0.6 0.4 0.2 0 3 4 10 10 Frequency (Hz)
Distribution of NMF activations
Distribution of NMF activations
Distribution of NMF activations
Ratio and sum of NMF activations
Thanks! Quim Llimona MUMT 605 Final Project December 18th, 2015
Recommend
More recommend