functional analysis review
play

Functional Analysis Review Lorenzo Rosasco slides courtesy of Andre - PowerPoint PPT Presentation

Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Functional Analysis Review Lorenzo Rosasco slides courtesy of Andre Wibisono 9.520: Statistical Learning Theory and Applications February 13, 2012 L. Rosasco Functional


  1. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Functional Analysis Review Lorenzo Rosasco –slides courtesy of Andre Wibisono 9.520: Statistical Learning Theory and Applications February 13, 2012 L. Rosasco Functional Analysis Review

  2. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators 1 Vector Spaces 2 Hilbert Spaces 3 Matrices 4 Linear Operators L. Rosasco Functional Analysis Review

  3. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Vector Space A vector space is a set V with binary operations +: V × V → V and · : R × V → V such that for all a , b ∈ R and v , w , x ∈ V : 1 v + w = w + v 2 ( v + w ) + x = v + ( w + x ) 3 There exists 0 ∈ V such that v + 0 = v for all v ∈ V 4 For every v ∈ V there exists − v ∈ V such that v + (− v ) = 0 5 a ( bv ) = ( ab ) v 6 1 v = v 7 ( a + b ) v = av + bv 8 a ( v + w ) = av + aw L. Rosasco Functional Analysis Review

  4. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Vector Space A vector space is a set V with binary operations +: V × V → V and · : R × V → V such that for all a , b ∈ R and v , w , x ∈ V : 1 v + w = w + v 2 ( v + w ) + x = v + ( w + x ) 3 There exists 0 ∈ V such that v + 0 = v for all v ∈ V 4 For every v ∈ V there exists − v ∈ V such that v + (− v ) = 0 5 a ( bv ) = ( ab ) v 6 1 v = v 7 ( a + b ) v = av + bv 8 a ( v + w ) = av + aw Example: R n , space of polynomials, space of functions. L. Rosasco Functional Analysis Review

  5. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Inner Product An inner product is a function �· , ·� : V × V → R such that for all a , b ∈ R and v , w , x ∈ V : L. Rosasco Functional Analysis Review

  6. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Inner Product An inner product is a function �· , ·� : V × V → R such that for all a , b ∈ R and v , w , x ∈ V : 1 � v , w � = � w , v � 2 � av + bw , x � = a � v , x � + b � w , x � 3 � v , v � � 0 and � v , v � = 0 if and only if v = 0. L. Rosasco Functional Analysis Review

  7. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Inner Product An inner product is a function �· , ·� : V × V → R such that for all a , b ∈ R and v , w , x ∈ V : 1 � v , w � = � w , v � 2 � av + bw , x � = a � v , x � + b � w , x � 3 � v , v � � 0 and � v , v � = 0 if and only if v = 0. v , w ∈ V are orthogonal if � v , w � = 0. L. Rosasco Functional Analysis Review

  8. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Inner Product An inner product is a function �· , ·� : V × V → R such that for all a , b ∈ R and v , w , x ∈ V : 1 � v , w � = � w , v � 2 � av + bw , x � = a � v , x � + b � w , x � 3 � v , v � � 0 and � v , v � = 0 if and only if v = 0. v , w ∈ V are orthogonal if � v , w � = 0. Given W ⊆ V , we have V = W ⊕ W ⊥ , where W ⊥ = { v ∈ V | � v , w � = 0 for all w ∈ W } . L. Rosasco Functional Analysis Review

  9. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Inner Product An inner product is a function �· , ·� : V × V → R such that for all a , b ∈ R and v , w , x ∈ V : 1 � v , w � = � w , v � 2 � av + bw , x � = a � v , x � + b � w , x � 3 � v , v � � 0 and � v , v � = 0 if and only if v = 0. v , w ∈ V are orthogonal if � v , w � = 0. Given W ⊆ V , we have V = W ⊕ W ⊥ , where W ⊥ = { v ∈ V | � v , w � = 0 for all w ∈ W } . Cauchy-Schwarz inequality: � v , w � � � v , v � 1 / 2 � w , w � 1 / 2 . L. Rosasco Functional Analysis Review

  10. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Norm Can define norm from inner product: � v � = � v , v � 1 / 2 . L. Rosasco Functional Analysis Review

  11. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Norm A norm is a function � · � : V → R such that for all a ∈ R and v , w ∈ V : 1 � v � � 0, and � v � = 0 if and only if v = 0 2 � av � = | a | � v � 3 � v + w � � � v � + � w � Can define norm from inner product: � v � = � v , v � 1 / 2 . L. Rosasco Functional Analysis Review

  12. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Metric Can define metric from norm: d ( v , w ) = � v − w � . L. Rosasco Functional Analysis Review

  13. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Metric A metric is a function d : V × V → R such that for all v , w , x ∈ V : 1 d ( v , w ) � 0, and d ( v , w ) = 0 if and only if v = w 2 d ( v , w ) = d ( w , v ) 3 d ( v , w ) � d ( v , x ) + d ( x , w ) Can define metric from norm: d ( v , w ) = � v − w � . L. Rosasco Functional Analysis Review

  14. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Basis B = { v 1 , . . . , v n } is a basis of V if every v ∈ V can be uniquely decomposed as v = a 1 v 1 + · · · + a n v n for some a 1 , . . . , a n ∈ R . L. Rosasco Functional Analysis Review

  15. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Basis B = { v 1 , . . . , v n } is a basis of V if every v ∈ V can be uniquely decomposed as v = a 1 v 1 + · · · + a n v n for some a 1 , . . . , a n ∈ R . An orthonormal basis is a basis that is orthogonal ( � v i , v j � = 0 for i � = j ) and normalized ( � v i � = 1). L. Rosasco Functional Analysis Review

  16. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators 1 Vector Spaces 2 Hilbert Spaces 3 Matrices 4 Linear Operators L. Rosasco Functional Analysis Review

  17. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Hilbert Space, overview Goal: to understand Hilbert spaces (complete inner product spaces) and to make sense of the expression ∞ � f = � f , φ i � φ i , f ∈ H i = 1 Need to talk about: 1 Cauchy sequence 2 Completeness 3 Density 4 Separability L. Rosasco Functional Analysis Review

  18. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Cauchy Sequence Recall: lim n → ∞ x n = x if for every ǫ > 0 there exists N ∈ N such that � x − x n � < ǫ whenever n � N . L. Rosasco Functional Analysis Review

  19. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Cauchy Sequence Recall: lim n → ∞ x n = x if for every ǫ > 0 there exists N ∈ N such that � x − x n � < ǫ whenever n � N . ( x n ) n ∈ N is a Cauchy sequence if for every ǫ > 0 there exists N ∈ N such that � x m − x n � < ǫ whenever m , n � N . L. Rosasco Functional Analysis Review

  20. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Cauchy Sequence Recall: lim n → ∞ x n = x if for every ǫ > 0 there exists N ∈ N such that � x − x n � < ǫ whenever n � N . ( x n ) n ∈ N is a Cauchy sequence if for every ǫ > 0 there exists N ∈ N such that � x m − x n � < ǫ whenever m , n � N . Every convergent sequence is a Cauchy sequence (why?) L. Rosasco Functional Analysis Review

  21. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Completeness A normed vector space V is complete if every Cauchy sequence converges. L. Rosasco Functional Analysis Review

  22. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Completeness A normed vector space V is complete if every Cauchy sequence converges. Examples: 1 Q is not complete. 2 R is complete (axiom). 3 R n is complete. 4 Every finite dimensional normed vector space (over R ) is complete. L. Rosasco Functional Analysis Review

  23. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Hilbert Space A Hilbert space is a complete inner product space. L. Rosasco Functional Analysis Review

  24. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Hilbert Space A Hilbert space is a complete inner product space. Examples: 1 R n 2 Every finite dimensional inner product space. n = 1 | a n ∈ R , � ∞ 3 ℓ 2 = { ( a n ) ∞ n = 1 a 2 n < ∞ } � 1 0 f ( x ) 2 dx < ∞ } 4 L 2 ([ 0, 1 ]) = { f : [ 0, 1 ] → R | L. Rosasco Functional Analysis Review

  25. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Density Y is dense in X if Y = X . L. Rosasco Functional Analysis Review

  26. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Density Y is dense in X if Y = X . Examples: 1 Q is dense in R . 2 Q n is dense in R n . 3 Weierstrass approximation theorem: polynomials are dense in continuous functions (with the supremum norm, on compact domains). L. Rosasco Functional Analysis Review

  27. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Separability X is separable if it has a countable dense subset. L. Rosasco Functional Analysis Review

  28. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Separability X is separable if it has a countable dense subset. Examples: 1 R is separable. 2 R n is separable. 3 ℓ 2 , L 2 ([ 0, 1 ]) are separable. L. Rosasco Functional Analysis Review

  29. Outline Vector Spaces Hilbert Spaces Matrices Linear Operators Orthonormal Basis A Hilbert space has a countable orthonormal basis if and only if it is separable. Can write: ∞ � f = � f , φ i � φ i for all f ∈ H . i = 1 L. Rosasco Functional Analysis Review

Recommend


More recommend