fractional gaussian fields for modeling and rendering of
play

Fractional Gaussian Fields for Modeling and Rendering of - PowerPoint PPT Presentation

Fractional Gaussian Fields for Modeling and Rendering of SpatiallyCorrelated Media Jie Guo 1* Yanjun Chen 1 Bingyang Hu 1 LingQi Yan 2 Yanwen Guo 1 Yuntao Liu 1 1 State Key Lab for Novel Software 2 University of California, Santa Barbara


  1. Fractional Gaussian Fields for Modeling and Rendering of Spatially‐Correlated Media Jie Guo 1* Yanjun Chen 1 Bingyang Hu 1 Ling‐Qi Yan 2 Yanwen Guo 1 Yuntao Liu 1 1 State Key Lab for Novel Software 2 University of California, Santa Barbara Technology, Nanjing University *guojie@nju.edu.cn

  2. Participating Media stanschaap.com

  3. Participating Media videoblocks.com

  4. Participating Media

  5. Participating Media scattering

  6. Participating Media absorption

  7. Participating Media Independent Scattering Approximation Classical Radiative Transport Equation

  8. Related Work (But, a lot of works have observed correlations in particle distribution)

  9. Related Work

  10. Related Work [Meng et al. 2015] [Müller et al. 2016] [Bitterli et al. 2018] [Jarabo et al. 2018]

  11. Related Work [Meng et al. 2015] [Müller et al. 2016] [Bitterli et al. 2018] [Jarabo et al. 2018]

  12. Our method  General media  Heterogeneity  Long‐range correlations

  13. Spatially‐Correlated Media Uncorrelated Media Correlated Media Uncorrelated Media

  14. Spatially‐Correlated Media Correlated Media Uncorrelated Media

  15. Spatially‐Correlated Media 𝜏 � 𝒚 𝒛 𝜕 � 𝜏 � 𝑢 � �� � 𝑓 �� 𝒚,� � Transmittance : 𝑈 𝒚, 𝒛 � 𝑓 � � � � 𝒚��� � 𝜏 � 𝒚 � 𝜏 � 𝒚 � 𝜏 � 𝒚 Extinction field :

  16. Spatially‐Correlated Media 𝜏 � 𝒚 𝒛 𝜕 � 𝜏 � 𝑢 � �� � 𝑓 �� 𝒚,� � Transmittance : 𝑈 𝒚, 𝒛 � 𝑓 � � � � 𝒚��� � 𝜏 � 𝒚 � 𝜏 � 𝒚 � 𝜏 � 𝒚 Extinction field : We model 𝜏 � as a Fractional Gaussian Field (FGF)

  17. Fractional Gaussian Fields Random field A collection of random variables: 𝑌 � 𝑌 𝑢, 𝜕 , 𝑢 ∈ ℝ � , 𝜕 ∈ Ω 𝑢 𝜕

  18. Fractional Gaussian Fields Random field A collection of random variables: 𝑌 � 𝑌 𝑢, 𝜕 , 𝑢 ∈ ℝ � , 𝜕 ∈ Ω 𝑌 𝑢 � ,· 𝑢 𝜕

  19. Fractional Gaussian Fields Random field A collection of random variables: 𝑌 � 𝑌 𝑢, 𝜕 , 𝑢 ∈ ℝ � , 𝜕 ∈ Ω 𝑢 𝑌 ·, 𝜕 � realization 𝜕

  20. Fractional Gaussian Fields Random field A collection of random variables: 𝑌 � 𝑌 𝑢, 𝜕 , 𝑢 ∈ ℝ � , 𝜕 ∈ Ω Gaussian (random) field A collection of Gaussian‐distributed random variables. White Noise

  21. Fractional Gaussian Fields Then what is “ fractional ”? Let 𝐽 be the integral operator 𝐽 � 1 � 𝑦 � /2 𝐽 1 � 𝑦 𝐽 𝑦 � ? 𝐽 � 𝑦 � ? , 𝑏 � 0

  22. Fractional Gaussian Fields Then what is “ fractional ”? Let 𝐽 be the integral operator 𝐽 � 1 � 𝑦 � /2 𝐽 1 � 𝑦 𝐽 𝑦 � ? 𝐽 � 𝑦 � ? , 𝑏 � 0

  23. Fractional Gaussian Fields With the fractional integral operator 𝐽 � �.� [ ] White Noise

  24. Fractional Gaussian Fields With the fractional integral operator 𝐽 � �.� [ ] White Noise

  25. Fractional Gaussian Fields With the fractional integral operator 𝐽 � �.� [ ] White Noise

  26. Fractional Gaussian Fields Fractional Gaussian Fields

  27. Fractional Gaussian Fields �� 𝑒 ‐dimensional FGF: � 𝑋 : white noise fractional Laplacian 𝑡 � 0 white noise The FGF family 𝑡 � 1, 𝑒 � 1 Brownian motion 1 2 � 𝑡 � 3 fractional Brownian motion 2 , 𝑒 � 1 (fBm)

  28. Fractional Gaussian Fields �� 𝑒 ‐dimensional FGF: � 𝑋 : white noise � Hurst parameter 𝐼 � 𝑡 � � 𝐼 Correlation

  29. Autocovariance Function �� 𝑒 ‐dimensional FGF: � 𝑋 : white noise Autocovariance function of pink noise: 𝐷 𝐼, 𝑒 Scaling term 𝑇 � Power spectral density of white noise

  30. Autocovariance Function �� 𝑒 ‐dimensional FGF: � 𝑋 : white noise Autocovariance function of k‐fBm:

  31. Autocovariance Function covariance matrix (1D) Pink noise (H<0) k‐fBm (H>0)

  32. Autocovariance Function covariance matrix (1D) Pink noise Long‐range correlation k‐fBm

  33. 2D Fractional Gaussian Fields

  34. 2D Fractional Gaussian Fields 𝐼 Correlation Aggregates

  35. Extinction Field We model 𝜏 � as a FGF : � � � var�𝜏 � 𝒚 � �? Macro‐scale: Constant Micro‐scale: FGF Fixing 𝒚 , 𝜏 � 𝒚 is a random variable with mean 𝜏 � and its variance is controlled by the FGF

  36. Extinction Field We model 𝜏 � as a FGF : � � � � 𝒚��� � �� � 𝒚,� The line‐averaged extinction 𝜏 � 𝒚 � � � is a � � Gaussian‐distributed random variable. � � var 𝜏 � � 1 � � 1 𝜐 𝒚, 𝑢 � � 𝜐 𝒚, 𝑢 𝑢 � � � cov 𝒚 � , 𝒚 �� d𝑢 � d𝑢 �� 𝑢 � � � autocovariance function of the FGF

  37. Extinction Field Pink noise (H<0) � � var 𝜏 � � 1 � � 1 𝜐 𝒚, 𝑢 � � 𝜐 𝒚, 𝑢 𝑢 � � � cov 𝒚 � , 𝒚 �� d𝑢 � d𝑢 �� 𝑢 � � �

  38. Extinction Field k‐fBm (H>0) � � var 𝜏 � � 1 � � 1 𝜐 𝒚, 𝑢 � � 𝜐 𝒚, 𝑢 𝑢 � � � cov 𝒚 � , 𝒚 �� d𝑢 � d𝑢 �� 𝑢 � � �

  39. Extinction Field Numerical verification:

  40. Extinction Field Numerical verification: One‐point scale‐independence Pink noise k‐fBm

  41. Extinction Field The variance of 𝜏 � 𝒚 : White noise Pink noise K‐fBm

  42. Transmittance Ensemble‐averaged transmittance � � 𝑓 ��� � � � 𝑓 ��� � 𝑞𝑒𝑔 𝜏 � d𝜏 � Tr 𝑢 �

  43. Transmittance Ensemble‐averaged transmittance � � 𝑓 ��� � � � 𝑓 ��� � 𝑞𝑒𝑔 𝜏 � d𝜏 � Tr 𝑢 � characteristic function 𝜒 � � 𝐣𝑢 𝜏 � � 𝜏 � 𝜏 � ~ Γ� , � Use gamma distribution for non‐negative extinction var 𝜏 � var 𝜏 �

  44. Transmittance Ensemble‐averaged transmittance � � 𝑓 ��� � � � 𝑓 ��� � 𝑞𝑒𝑔 𝜏 � d𝜏 � Tr 𝑢 �

  45. Transmittance Transparent

  46. Transmittance 𝐼 � �0.2 𝐼 � 0.5 𝐼 � 0.8

  47. Rendering Techniques Energy‐Conserving Volumetric Rendering Equation Transport kernel:

  48. Results

  49. Short‐range correlations Long‐range correlations

  50. Low density

  51. Comparing to the GBE [Jarabo et al. 2018]

  52. Comparing to the Bitterli model [Bitterli et al. 2018]

  53. Uncorrelated media

  54. Correlated media

  55. Conclusion  A mathematical tool for physically‐based modeling spatial correlations in random media.  Using k‐th order fBm to generate long‐range correlations.  The usage of the non‐exponential transmittance functions in an energy‐ conserving RTE framework.

  56. Thank you! Q&A

Recommend


More recommend