Formation, Characterization, and Application Formation, Characterization, and Application of Gas- -Phase, Multiply Charged Reverse Phase, Multiply Charged Reverse of Gas Micelles Micelles Jianbo Liu*, Yigang Fang, William Pineors Department of Chemistry, Queens College & The Graduate Center of the City University of New York Spring 2010 ACS Meeting, San Francisco March 25, 2010
Reverse Micelles (RMs) Na + One of the most interesting nanometer- sized structures NaAOT, sodium bis(2-ethylhexyl) selective encapsulation/solubilization sulfosuccinate, a surfactant molecule commonly used for catalysis making RMs membrane-mimetic system
Formation of Gas-Phase RM Approach In Nature (marine aerosols) 2. Transfer of micelle- contained droplets to 1. Formation of the gas phase, 3. RM in the gas-phase, aerosol particles at evaporation of water maintaining encapsulated the sea surface minerals and small organics C. M. Dobson, G. B. Ellison, A. F. Tuck, V. Vaida. PNAS , 97 , 11864 (2000) In Laboratory RM in vacuo , encapsulating biomolecules Reverse micelle- contained droplets Transfer to the gas phase, Nano-electrospray removal of solvent, then ionization of exposure to the vacuum micelle solution Y. Fang, A. Bennett, J. Liu, Int J Mass Spectrom . , in press (2010)
Instrument: ESI Guided-Ion-Beam Tandem Mass Spectrometer Source Hexapole Quadrupole Octapole Ion Guide 2nd Quadrupole ESI Chamber Ion Guide Mass Filter & Scattering Cell Mass Filter & Detector 9.00 " 7.00 " 12.00 " 14.00 " 16.00 " 6.00 " 6.50 "
Part I Formation of Gas-Phase AOT RM & Encapsulation of Gly m/z 1000 1500 2000 2500 3000 3500 4000 ESI solution: 3 6 8 n=2 4 5 7 z=1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 5 mM NaAOT in hexane, z=2 0 ([water]/[AOT]) = 10 8 9 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 11 z=3 21 22 32 33 34 35 14 15 16 17 18 19 20 23 24 25 26 27 28 29 30 31 [Similar spectrum was [(NaAOT) n Na z ] z+ z=4 obtained using 5 mM 28 34 35 20 21 22 23 24 25 26 27 29 30 31 32 33 39 40 41 42 43 44 36 37 38 z=5 NAOT in methanol/water] n=3 4 5 6 7 8 9 [(NaAOT) n H] + ESI solution: 3 14+G 21+4G 15+G 18+3G 3 3 17+2G 3 13+G 3 24+5G 3 2 16+G 3 20+3G 3 Same as above, except 17+G 3 23+G 23+4G 22+G 3 3 3 3 24+4G 19+2G 21+3G 3 18+2G 3 20+G 3 into which Gly was 3 3 20+2G 19+G 22+2G 18+G 3 16+2G 17+2G 3 3 23+2G 3 2 2 3 added ([Gly] = 1 mM) 23+3G 15+G 24+3G 3 14+G 2 3 2 21+2G [(NaAOT) n Na z Gly m ] z+ = n + mG 24+G 3 24+2G 3 21+G 3 z 3 16+G 17+G 2 2 1000 1500 2000 2500 3000 3500 4000 m/z
Size Dependence of Gas-Phase RM Encapsulation Aggregation number Core diameter Max. number of Gly Evidence that Gly molecules are confined within n (nm) encapsulated in RM NaAOT aggregates. n < 13 0 n 13 1.4 1 n 16 1.6 2 n 17 1.7 3 n 21 1.9 4 n 24 2.1 5 D n A / Core diameter: A is the area of the AOT polar head (0.52 nm 2 ) Size of Gly: 0.6-0.7 nm 6
Collision-Induced Dissociation (CID) Cross Section As a Function of E col Empty gas-phase RM Gas-phase RM encapsulating Gly HS 20 n m 20+G 19+G z [( NaAOT ) Gly Na ] n 3 3 3 1000 n m z 1000 z z [( NaAOT ) n Na ] z z 500 500 0 0 0 2 4 6 8 0 2 4 6 8 HS 19+G 17+G 17 19 3 2 2 3 1000 1000 1000 1000 500 500 500 500 0 0 0 0 0 2 4 6 0 2 4 6 8 0 2 4 6 0 2 4 6 8 HS 15+G 17+G 15 17 2 3 1000 1000 2 1000 1000 3 CID (? 2 ) CID (? 2 ) At highest E col , cid is 500 500 500 500 approaching the hard-sphere 0 0 0 0 0 2 4 6 0 2 4 6 8 collision limit 0 2 4 6 0 2 4 6 8 13+G 16+G 13 16 3 2 1000 1000 2 3 1000 1000 Another piece of evidence 500 500 that gas-phase AOT forms 500 500 spherical reverse micellar 0 0 0 0 0 2 4 6 0 2 4 6 8 0 2 4 6 0 2 4 6 8 structure E col E col E col E col
Part II Driving Forces for Solubilization: Electrostatic vs. Hydrophobic In Solution-Phase RM Hydrophilic biomolecule (e.g. Gly, TrpH + ) located in the internal core electrostatic interaction Hydrophobic biomolecule (e.g. neutral Trp) located at the interface hydrophobic interaction P. L. Luisi, M. Giomini, M. P. Pileni, B. H. Robinson, Biochimica et Biophysica Acta , 947, 209(1988)
Driving Force for Solubilization in Gas-Phase RM? 1500 2000 2500 3000 3500 4000 n=4 5 6 7 8 z =1 n=7 8 9 10 11 12 13 14 15 16 17 z =2 Top: n=10 11 12 13 14 16 17 19 26 15 18 20 21 22 23 24 25 z =3 17+2WH 16+WH 13+2WH RM occupied with n + mWH 15+2WH 3 3 2 11+2WH 14+2WH = 3 19+WH 18+WH 20+2WH z 14+WH 2 2 3 4 3 3 10+WH 10+2WH protonated TrpH + 13+WH z+ 2 [(NaAOT) n Na z-m TrpH m ] 11+WH 15+WH 2 2 16+WH 2 14+WH 2 12+WH 26+WH 2 2 2 9+WH 17+WH 4 2 17+WH 25+WH 2 15+WH 12+2WH 23+2WH 21+2WH 3 2 3 3 3 3 18+WH 3 14+2WH 20+WH 13+WH 3 3 3 22+WH 21+WH 18+2WH 3 24+WH 4 3 3 23+WH 3 12+WH 3 11+WH 3 14+W 10+W 3 2 26+W 15+W 12+W 3 15+W 3 2 14+W 2 17+W 23+W 2 Bottom: 2 3 21+W 13+W 25+W 3 22+W 17+W 2 20+W 3 3 3 24+W 18+W 3 16+W RM occupied with neutral 3 3 2 n + mW 11+W Trp (hydrophobic) = 19+W 2 z 3 z+ [(NaAOT) n Na z-m Trp m ] 16+W 3 1500 2000 2500 3000 3500 4000 m/z
Probing Guest Molecule Location Using CID: Encapsulation Inside vs. Attached to the Interface 17+W * * 17+WH 2 WH = TrpH + , 2 W = Trp, 17 protonated Trp neutral Trp 16+WH 2 8 16 ( ) 2 17 1 2 2 * 15+W * 15+WH 2 2 15 7 14 ( ) 2 2 1 14+WH 15 2 2 * 21+W * 21+WH 7 14 , 21 ( ) 12+WH 3 1 2 3 3 21 2 15+WH 13+WH 3 2 2 15 5 10 6 12 ( ) ( ) 8 16 20+WH ( ) 13 2 1 1 2 2 3 1 2 2 * 20+W * 20+WH 19+WH 3 3 3 12+WH 7 14 ( ) 20 2 1 2 14+WH 8 16 3 15 ( ) 6 12 13 20 ( ) 19 2 2 1 2 1 2 2 3 3 * 18+WH * 18+W 3 3 6 12 , 18 ( ) 1 2 3 12+WH 18 17+WH 11 2 3 3 2 13 13+WH 17 2 2 3 * * 17+W 17+WH 17 3 3 3 11+WH 2 17 16+WH 3 3 6 12 ( ) 11 5 10 , 15 16 1 2 ( ) 2 1 2 3 3 * 15+WH * 15+W 14+WH 3 3 3 15 9+WH 5 10 , 15 ( ) 3 2 1 2 3 14 6 12 9 11 ( 3 ) 1 2 2 2 2000 2500 3000 3500 4000 2000 2500 3000 3500 4000 m/z m/z
Part III Selectivity Between Two AAs Case (1): Aspartic Acid vs. Tryptophan 1500 2000 2500 3000 3500 4000 n=4 5 6 7 8 z =1 ESI of AOT/Asp n=7 8 9 10 11 12 13 14 15 16 17 z =2 n=10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 z =3 19+DH n + mDH 21+DH 3 = 3 z 14+DH 17+DH 16+DH z+ 12+DH 2 [(NaAOT) n Na z-m AspH m ] 13+DH 3 3 2 2 21+2DH 17+2DH 3 3 14+2DH 25+DH 18+DH 15+DH 2 3 3 3 20+DH 14+DH 13+DH 17+DH 3 23+DH 24+DH 3 3 2 3 22+DH 3 26+DH 11+DH 3 16+DH 12+DH 10+DH 11+DH 3 18+2DH 3 15+DH 2 2 3 2 3 2 23+2DH 24+2DH 15+2DH 3 3 3 11+WH 3 ESI of AOT/Asp+Trp 12+WH 3 11+2WH 23+WH 14+2WH 3 2 3 24+WH 18+2WH 21+WH 26+WH 3 22+WH 3 3 4 4 20+WH 14+2WH 3 2 18+WH 17+WH 3 13+WH 3 3 15+WH 17+WH 3 14+WH 16+WH 12+WH 13+WH 2 3 14+WH 2 11+WH 2 2 15+WH 2 2 2 18+WH 9+WH 4 2 10+WH 16+WH 12+2WH 17+2WH 13+2WH 23+2WH 2 2 3 2 21+2WH 3 3 3 15+2WH 3 n + mWH = 19+WH z 20+2WH 3 3 z+ [(NaAOT) n Na z-m TrpH m ] 10+2WH 2 1500 2000 2500 3000 3500 4000 m/z
Case (2): Arginine vs. Tryptophan 1500 2000 2500 3000 3500 4000 n=4 5 6 7 8 z =1 n=7 8 9 10 11 12 13 14 15 16 17 z =2 ESI of AOT/Arg n=10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 z =3 17+2RH 16+RH 15+RH 3 3 20+2RH 3 19+RH 3 n + mRH 18+RH 3 15+2RH = 17+RH 19+2AH 14+AH z 10+RH 3 3 3 3 2 2 z+ [(NaAOT) n Na z-m ArgH m ] 21+RH 24+RH 12+AH 25+RH 3 20+RH 21+2RH 3 16+2RH 2 3 3 3 3 16+RH 18+2AH 22+2RH 14+RH 2 3 3 3 23+RH 24+2RH 17+RH 13+RH 3 22+RH 3 2 3 3 23+2RH 3 12+RH 3 11+RH 3 ESI of AOT/Arg+Trp No changes when mixed with Trp ! Only Arg detected, no encapsulation of Trp
Fundamentals of Selectivity Aspartic acid (D) Tryptophan (W) Proline (P) Arginine (R) pK a of -COOH 1.9 2.8 2.0 2.2 pK a of -NH 3 + 9.6 9.4 10.6 9.0 pK a of acidic R 3.7 - - 12.5 pI 2.8 5.9 6.3 10.8 pH of ESI solution of AOT/(Trp + Asp) in methanol/water = 5.1 pH of ESI solution of AOT/(Trp + Arg) in methanol/water = 7.4 Selectivity between different AAs? • Selectivity reflects a competition between electrostatic and hydrophobic forces, which can be tuned up by changing the pH of ESI solution. • Amino acid with a higher pI exists in protonated form and has a larger affinity with AOT - (i.e. Arg > Trp > Asp)
Conclusions NaAOT surfactants are able to form RM in the gas phase. Gas-phase RM can act as nanometer-sized vehicle for selective transport of non-volatile biomolecules into the gas phase. Driving force for solubilization: electrostatic & hydrophobic interactions. Application in Analytical Chemistry: Separation and Direct Determination of ionic and neutral amino acids in solution.
Acknowledgements Acknowledgements $$ ACS-PRF Grant CUNY Collaboration Grant QC Research Enhancement Funds
Recommend
More recommend