Forecasting challenges & strategies Stating the obvious I We don’t know The Model of asset returns Actual DGP is highly complex & constantly evolving Substantial model uncertainty & instability Hedgehog approach inadvisable Need to incorporate info from many predictors But also need to avoid overfitting Effective strategies from recent literature Forecast combination & diffusion indices Stating the obvious II I’m a fox David E. Rapach Forecasting Asset Returns
Forecasting challenges & strategies Stating the obvious I We don’t know The Model of asset returns Actual DGP is highly complex & constantly evolving Substantial model uncertainty & instability Hedgehog approach inadvisable Need to incorporate info from many predictors But also need to avoid overfitting Effective strategies from recent literature Forecast combination & diffusion indices Stating the obvious II I’m a fox David E. Rapach Forecasting Asset Returns
Forecasting challenges & strategies Stating the obvious I We don’t know The Model of asset returns Actual DGP is highly complex & constantly evolving Substantial model uncertainty & instability Hedgehog approach inadvisable Need to incorporate info from many predictors But also need to avoid overfitting Effective strategies from recent literature Forecast combination & diffusion indices Stating the obvious II I’m a fox David E. Rapach Forecasting Asset Returns
Forecasting challenges & strategies Stating the obvious I We don’t know The Model of asset returns Actual DGP is highly complex & constantly evolving Substantial model uncertainty & instability Hedgehog approach inadvisable Need to incorporate info from many predictors But also need to avoid overfitting Effective strategies from recent literature Forecast combination & diffusion indices Stating the obvious II I’m a fox David E. Rapach Forecasting Asset Returns
Forecasting challenges & strategies Stating the obvious I We don’t know The Model of asset returns Actual DGP is highly complex & constantly evolving Substantial model uncertainty & instability Hedgehog approach inadvisable Need to incorporate info from many predictors But also need to avoid overfitting Effective strategies from recent literature Forecast combination & diffusion indices Stating the obvious II I’m a fox David E. Rapach Forecasting Asset Returns
Forecasting challenges & strategies Stating the obvious I We don’t know The Model of asset returns Actual DGP is highly complex & constantly evolving Substantial model uncertainty & instability Hedgehog approach inadvisable Need to incorporate info from many predictors But also need to avoid overfitting Effective strategies from recent literature Forecast combination & diffusion indices Stating the obvious II I’m a fox David E. Rapach Forecasting Asset Returns
Forecasting challenges & strategies Stating the obvious I We don’t know The Model of asset returns Actual DGP is highly complex & constantly evolving Substantial model uncertainty & instability Hedgehog approach inadvisable Need to incorporate info from many predictors But also need to avoid overfitting Effective strategies from recent literature Forecast combination & diffusion indices Stating the obvious II I’m a fox David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Stylized example: equity risk premium ERP: S&P 500 return minus risk-free return Huge literature on predicting ERP (Rapach & Zhou 2013) Predictive regression forecast: ˆ α t + ˆ R t + 1 = ˆ β t x t Incorporate info from x t to forecast R t + 1 Prevailing mean benchmark forecast: ¯ R t + 1 Assumes no return predictability (RW with drift) Stringent out-of-sample benchmark (Goyal & Welch 2008) Out-of-sample R 2 (Campbell & Thompson 2008) Proportional ↓ in MSFE for PR vis-à-vis PM Sample period: 1926:01–2014:12 Forecast evaluation period: 1960:01–2014:12 David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Highly plausible predictors Dividend yield (Fama & French 1988) T-bill yield (Ang & Bekaert 2007) Term spread (Campbell 1987) Default spread (Fama & French 1989) Inflation (Nelson 1976) Output gap (Cooper & Priestly 2009) Moving-average signal (Neely, Rapach, Tu, & Zhou 2014) Momentum signal (Neely, Rapach, Tu, & Zhou 2014) David E. Rapach Forecasting Asset Returns
Individual monthly PR forecasts Dividend yield T-bill yield 2 2 1 1 0 0 -1 -1 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 Term spread Default spread 2 2 1 1 0 0 -1 -1 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 David E. Rapach Forecasting Asset Returns
Individual monthly PR forecasts Inflation Output gap 2 2 1 1 0 0 -1 -1 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 MA signal Momentum signal 2 2 1 1 0 0 -1 -1 1960 1970 1980 1990 2000 2010 1960 1970 1980 1990 2000 2010 David E. Rapach Forecasting Asset Returns
R 2 OS stats (%) Semi- Predictor Monthly Quarterly annual Annual Dividend yield − 0.03 − 2.27 1 . 11 − 1.87 T-bill yield − 0.10 − 0.47 − 1.86 − 2.59 Term spread 0 . 25 0 . 45 0.40 2 . 24 Default spread 0.30 1 . 11 1 . 29 3 . 28 Inflation 0.03 0.63 1 . 07 1 . 76 Output gap 0.17 0.45 0 . 88 1.20 MA signal 0 . 41 − 0.16 − 1.05 − 1.66 Momentum signal − 0.09 − 0.46 − 1.12 − 0.30 David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Drawbacks to individual PR forecasts Individual PR forecasts perform inconsistently/unevenly We can’t identify best predictor a priori Relying on individual PR forecast is too risky Too ‘hedgehogy’ We need to get foxy Incorporate info from multiple plausible predictors Forecast diversification (Timmermann 2006) Bad strategy: include all predictors in one regression Kitchen sink PR: ˆ α t + ˆ β 1 , t x 1 , t + · · · + ˆ R t + 1 = ˆ β K , t x K , t R 2 OS stats: − 0 . 95 % , − 6 . 22 % , − 5 . 25 % , − 9 . 64 % In-sample overfitting (avoid overfitting like the plague) David E. Rapach Forecasting Asset Returns
Monthly kitchen sink PR forecast 2 1 0 -1 1960 1970 1980 1990 2000 2010 David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Good foxy strategies Incorporate info from all predictors without overfitting Forecast combination (Rapach, Strauss, & Zhou 2010) Take simple average of individual PR forecasts Avoid overfitting by shrinking forecast to PM Shrink to ‘outside view’ R 2 OS stats: 0 . 77 % , 2 . 17 % , 2 . 52 % , 6 . 08 % Diffusion index (Ludvigson & Ng 2007) Extract first few principal components from all predictors PCs serve as predictors for PR forecast Filter noise in individual predictors ⇒ more reliable signal R 2 OS stats: 0 . 60 % , 1 . 62 % , 2 . 66 % , 6 . 97 % David E. Rapach Forecasting Asset Returns
Monthly combination forecast 2 1 0 -1 1960 1970 1980 1990 2000 2010 David E. Rapach Forecasting Asset Returns
Monthly diffusion index forecast 2 1 0 -1 1960 1970 1980 1990 2000 2010 David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Dynamic asset allocation MV investor allocates monthly across stocks & bills Allocation to risky stocks: w t = ( 1 /γ )(ˆ σ 2 R t + 1 / ˆ t + 1 ) Realistic portfolio constraint: − 0 . 5 ≤ w t ≤ 1 . 5 σ 2 Certainty equivalent return (CER): ˆ µ p − 0 . 5 γ ˆ p σ 2 µ p ( ˆ ˆ p ): portfolio mean (variance) over evaluation period Annualized CER gain vis-à-vis PM for γ = 5 Combination forecast: 1.79% Diffusion index forecast: 2.46% Return predictability is economically valuable NB: assuming ‘small’ investor David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Additional elements Combination weights (Rapach, Strauss, & Zhou 2010) Place more weight on particular forecasts NB: typically best to hew close to equal weighting Economic restrictions ⇒ ↓ estimation uncertainty Sign restrictions (Campbell & Thompson 2008) Valuation ratios (Ferreira & Santa-Clara 2011) Bayesian (Pettenuzzo, Timmermann, & Valkanov 2014) Useful even if not literally true (bias-efficiency tradeoff) Regime switching (Ang & Timmermann 2012) Markov switching (Henkel, Martin, & Nardari 2011) Time-varying parameters (Dangl & Halling 2012) David E. Rapach Forecasting Asset Returns
Dynamic asset allocation: two recent studies MKT components (Kong, Rapach, Strauss, & Zhou 2011) Allocate across 25 Fama-French size/value portfolios Combination forecasts of component portfolio returns Based on 39 predictor variables Combination forecasts valuable inputs for DAA US stocks/bonds/bills (Almadi, Suri, & Rapach 2014) Active portfolio management vis-à-vis 60/35/5 benchmark Diffusion index forecasts of stock/bond/bill returns Extracted from fundamental, macro, and technical variables Diffusion index forecasts valuable inputs for DAA Largest gains typically realized during contractions/crises David E. Rapach Forecasting Asset Returns
Recommend
More recommend