Flavour physics M. Beneke (TU München) Latsis Symposium “Nature at the Energy Frontier” Zürich, June 3-6, 2013 Outline • Introduction • Unitarity triangle • B s (mixing, B s → µ + µ − , non-leptonic) • Electroweak penguin decays • Flavour-violating Higgs couplings • Loops and flavour violation in RS M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 1
Flavour and CP violation in the SM SU ( 3 ) × SU ( 2 ) × U ( 1 ) Y Field content and gauge charges − f ij i (¯ Q ′ L V † i ¯ Q ′ Li ˜ − y d CKM ) i Φ d Ri − y u Φ u Ri Λ [(¯ L T ǫ ) i i σ 2 Φ] [Φ T i σ 2 L j ] + h . c . − y l i ¯ L i Φ e Ri + h . c . sin θ 13 measured ⇒ CPV measurements in Only charged current. No Higgs FCNC ⇒ little direct impact of neutrino sector possible. Higgs discovery on SM flavour physics. FV in the SM is natural and predictive (especially CPV) ... • What is y u , d , V CKM ? Is V CKM complex? Why is y u , d , V CKM what it is? i i (Origin of flavour hierarchies) • Is this all there is? If not, what is it? Why didn’t we see it already? (The other flavour problem) • Baryogenesis? Leptogenesis? Strong CP problem, absence of EDMs. M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 2
Flavour and CP violation in the SM SU ( 3 ) × SU ( 2 ) × U ( 1 ) Y Field content and gauge charges − f ij i (¯ Q ′ L V † i ¯ Q ′ Li ˜ − y d CKM ) i Φ d Ri − y u Φ u Ri Λ [(¯ L T ǫ ) i i σ 2 Φ] [Φ T i σ 2 L j ] + h . c . − y l i ¯ L i Φ e Ri + h . c . sin θ 13 measured ⇒ CPV measurements in Only charged current. No Higgs FCNC ⇒ little direct impact of neutrino sector possible. Higgs discovery on SM flavour physics. FV in the SM is natural and predictive (especially CPV) ... • What is y u , d , V CKM ? Is V CKM complex? Why is y u , d , V CKM what it is? i i (Origin of flavour hierarchies) • Is this all there is? If not, what is it? Why didn’t we see it already? (The other flavour problem) • Baryogenesis? Leptogenesis? Strong CP problem, absence of EDMs. M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 2
The gauge hierarchy-flavour problem SM presumably valid only below some scale Λ L SM = L dim 4 − Λ 2 � 1 2 Φ † Φ + Λ 2 (¯ qq ¯ qq ) i + . . . i • Scalar mass term is the only dimensionful parameter in the renormalizable part of the Lagrangian. Sets the electroweak scale. M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 3
The gauge hierarchy-flavour problem SM presumably valid only below some scale Λ L SM = L dim 4 − Λ 2 � 1 2 Φ † Φ + Λ 2 (¯ qq ¯ qq ) i + . . . i • Scalar mass term is the only dimensionful parameter in the renormalizable part of the Lagrangian. Sets the electroweak scale. • Scalar mass term receives large quantum corrections is there is another scale Λ . Electroweak physics requires Λ ≤ M W / g ≈ few hundred GeV. • But flavour physics restricts the scale of dimension-6 operators to Λ ≥ 10 4 − 5 TeV Λ ≥ 10 3 TeV (¯ bd )(¯ (¯ sd )(¯ sd ) bd ) unless it is special (weak coupling, loop suppression, CKM-like suppressions). Generic scale far beyond reach of LHC! Difficult to construct natural models. But the argument may simply be wrong because nature may not care about naturalness ... M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 4
The gauge hierarchy-flavour problem SM presumably valid only below some scale Λ L SM = L dim 4 − Λ 2 � 1 2 Φ † Φ + Λ 2 (¯ qq ¯ qq ) i + . . . i • Scalar mass term is the only dimensionful parameter in the renormalizable part of the Lagrangian. Sets the electroweak scale. • Scalar mass term receives large quantum corrections is there is another scale Λ . Electroweak physics requires Λ ≤ M W / g ≈ few hundred GeV. • But flavour physics restricts the scale of dimension-6 operators to Λ ≥ 10 4 − 5 TeV Λ ≥ 10 3 TeV (¯ bd )(¯ (¯ sd )(¯ sd ) bd ) unless it is special (weak coupling, loop suppression, CKM-like suppressions). Generic scale far beyond reach of LHC! Difficult to construct natural models. But the argument may simply be wrong because nature may not care about naturalness ... M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 4
Flavour in the LHC Era LHCb (indirect) LHC (“high- p T ”) • B s physics • Higgs flavour • Electroweak Interplay? • top flavour penguins • Direct production • γ from B → DK s • Charm BSM only. Specific models M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 5
Flavour in the LHC Era LHCb (indirect) LHC (“high- p T ”) • B s physics • Higgs flavour • Electroweak Interplay? • top flavour penguins • Direct production • γ from B → DK s • Charm BSM only. Specific models M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 5
Flavour in the LHC Era LHCb (indirect) LHC (“high- p T ”) • B s physics • Higgs flavour • Electroweak Interplay? • top flavour penguins • Direct production • γ from B → DK s • Charm BSM only. Specific models M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 5
The Unitarity Triangle 1995 (top discovery) 2001 (B factory turn-on) 2013 (Precision flavour physics) • Anomalies disappeared ( B → τν ) or became implausible (Di-muon asymmetry A s SL ). • Never before as consistent and precise → MFV paradigm • UT triangle fit no longer an adequate representation of all tests of the SM flavour sector. • Non-standard flavour physics can still be hidden. M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 6
The Unitarity Triangle 1995 (top discovery) 2001 (B factory turn-on) 2013 (Precision flavour physics) • Anomalies disappeared ( B → τν ) or became implausible (Di-muon asymmetry A s SL ). • Never before as consistent and precise → MFV paradigm • UT triangle fit no longer an adequate representation of all tests of the SM flavour sector. • Non-standard flavour physics can still be hidden. M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 6
| V ub | problem Inclusive B → X u ℓν Exclusive B → πℓν | V ub | = ( 4 . 41 ± 0 . 15 exp + 0 . 15 − 0 . 17th ) · 10 − 3 | V ub | = ( 3 . 23 ± 0 . 31 ) · 10 − 3 Kinematic constraints due to charm back- Lattice QCD ground. QCD sum rules HQE + resummation. analyticity M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 7
| V ub | problem Inclusive B → X u ℓν Exclusive B → πℓν | V ub | = ( 4 . 41 ± 0 . 15 exp + 0 . 15 − 0 . 17th ) · 10 − 3 | V ub | = ( 3 . 23 ± 0 . 31 ) · 10 − 3 Kinematic constraints due to charm back- Lattice QCD ground. QCD sum rules HQE + resummation. analyticity • V ub – sin 2 β – ǫ K connection • Bet on exclusive ... • Some two-loop results for inclusive (fully differential (Brucherseifer, Caola, Melnikov, 2012); hard coefficient for resummation (Bonciani, Ferroglia; Asatrian, Greub, Pecjak; MB, Huber, Li; Bell, 2008)) not yet implemented. M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 8
| V ub | problem Inclusive B → X u ℓν Exclusive B → πℓν | V ub | = ( 4 . 41 ± 0 . 15 exp + 0 . 15 − 0 . 17th ) · 10 − 3 | V ub | = ( 3 . 23 ± 0 . 31 ) · 10 − 3 Kinematic constraints due to charm back- Lattice QCD ground. QCD sum rules HQE + resummation. analyticity • V ub – sin 2 β – ǫ K connection • Bet on exclusive ... • Some two-loop results for inclusive (fully differential (Brucherseifer, Caola, Melnikov, 2012); hard coefficient for resummation (Bonciani, Ferroglia; Asatrian, Greub, Pecjak; MB, Huber, Li; Bell, 2008)) not yet implemented. M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 8
B s lifetime difference and mixing phase � | B s ( t ) � � � | B s ( t ) � � � � i d M s − i 2 Γ s = | ¯ | ¯ B s ( t ) � B s ( t ) � dt Three observables related to mixing: • ∆ m s / Γ s large → many oscillations per lifetime M 12 ∝ ( V ∗ ts V tb ) 2 • ∆Γ s ( | Γ s 12 | ) relevant. Significant fraction of common final states from b → c ¯ cs . = ( 1 , α s ) × 16 π 2 Λ 3 + 16 π 2 Λ 4 ∆Γ ∆Γ s = ( 0 . 090 ± 0 . 018 ) ps − 1 + . . . = ⇒ m 3 m 4 Γ b b [Lenz-Nierste update, 1102.4274] OPE+HQE [MB, Buchalla, Dunietz, 1996; MB et al., 1998] + Lattice • Phase [MB et al, 1998, 2003; Ciuchini et al., 2003] � � − M s = 0 . 22 ◦ ± 0 . 06 ◦ cb V cs )) = 2 . 1 ◦ ± 0 . 1 ◦ 2 β s = 2arg ( − V ∗ tb V ts / ( V ∗ 12 φ s = arg Γ s 12 M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 9
∆Γ s and β s from B s → J /ψφ and related • Last loophole for large NP in B d , s mixing closed • HQE and Quark-Hadron Duality works in b → c ¯ cs . • No effect large expected in MFV models. • Generic models would affect B d mixing more than B s due to stronger CKM suppression. But quark flavour mixing may be related to lepton neutrino mixing. • To complete the picture Γ(¯ B s → ℓ + X ) − Γ( B s → ℓ − X ) ∆Γ s a sl = = tan Φ s Γ(¯ B s → ℓ + X ) + Γ( B s → ℓ − X ) ∆ M s Anomaly in D0 measurement. [LHCb 1304.2600] M. Beneke (TU München), Flavour physics Latsis Symposium, Zürich, 06 June 2013 10
Recommend
More recommend