finite square well scattering states
play

Finite square well: scattering states > 0 = 0 , < < - PowerPoint PPT Presentation

EE201/MSE207 Lecture 6 Finite square well: scattering states > 0 = 0 , < < 0 , > width 2 , depth 0 0 2 2 2 +


  1. EE201/MSE207 Lecture 6 Finite square well: scattering states 𝐹 > 0 π‘Š 𝑦 = βˆ’π‘Š 0 , βˆ’π‘ < 𝑦 < 𝑏 0 , 𝑦 > 𝑏 βˆ’π‘Š width 2𝑏 , depth π‘Š 0 0 βˆ’π‘ 𝑏 βˆ’ ℏ 2 𝑒 2 πœ” 𝑒𝑦 2 + π‘Š(𝑦)πœ” = πΉπœ” Now 𝐹 is given (any energy is possible) TISE 2𝑛 Again 3 regions: 2𝑛𝐹 (definition of 𝑙 as πœ” 𝑦 = 𝐡 𝑓 𝑗𝑙𝑦 + 𝐢𝑓 βˆ’π‘—π‘™π‘¦ , 𝑦 < βˆ’π‘, 𝑙 = for free particle) ℏ 𝑦 < 𝑏, πœ” 𝑦 = 𝐷 sin(π‘šπ‘¦) + 𝐸 cos(π‘šπ‘¦) , π‘š = 2𝑛 𝐹 + π‘Š 0 /ℏ (as before) πœ” 𝑦 = 𝐺 𝑓 𝑗𝑙𝑦 + 𝐻 𝑓 βˆ’π‘—π‘™π‘¦ 𝑦 > 𝑏, 4 boundary conditions, 6 variables ( 𝐹 is given, no normalization) No hope to find unique solution. But there should not be a unique solution! Let us focus on physical meaning (important to find a proper question).

  2. Add time dependence 𝑗𝑙 𝑦 βˆ’ ℏ𝑙 βˆ’π‘—π‘™ 𝑦 + ℏ𝑙 2𝑛 𝑒 + 𝐢 𝑓 2𝑛 𝑒 𝑦 < βˆ’π‘, Ξ¨ 𝑦, 𝑒 = 𝐡 𝑓 𝐡 outgoing wave incident wave 𝐢 (as for free particle; different phase and group velocities, but the same direction) 𝐡 𝐺 Similarly for 𝑦 > 𝑏 𝐢 𝐻 (if necessary, wave packets can be constructed later; in reality nobody usually does it because it is too complicated; instead, people work with unnormalized states) Assume that the wave is incident from the left, then 𝐻 = 0 𝐡 𝐺 𝐡 is incident wave amplitude 𝐢 𝐢 is reflected wave amplitude 𝐺 is transmitted wave amplitude We have 5 variables ( 𝐡, 𝐢, 𝐷, 𝐸, 𝐺 ) and 4 equations. Equations are linear. Can express 𝐢, 𝐷, 𝐸, 𝐺 as functions of 𝐡 (incident amplitude).

  3. Proper questions 𝐡 𝐺 𝐡 is incident wave amplitude (assume a wave incident 𝐢 𝐢 is reflected wave amplitude from the left) 𝐺 is transmitted wave amplitude Goal: find ratios 𝑠 = 𝐢 and 𝑒 = 𝐺 (these ratios are called reflection 𝐡 𝐡 and transmission amplitudes) 𝑆 = 𝑠 2 = 𝐢 2 Reflection coefficient (probability of reflection) 𝐡 2 π‘ˆ = 𝑒 2 = 𝐺 2 Transmission coefficient (probability of transmission) 𝐡 2 π‘ˆ + 𝑆 = 1 From physical meaning Remark 1. Definition of π‘ˆ is sometimes different (discuss later, Γ— 𝑀 𝑠 /𝑀 π‘š ) Remark 2. Terminology: Reflection/transmission amplitudes ( 𝑠, 𝑒 ) and coefficients ( 𝑆, π‘ˆ ) Remark 3. We defined 𝑆 and π‘ˆ as ratios; they become probabilities for wave packets (possible to show). Quadratic because probability ∝ Ξ¨ 2 .

  4. 𝐡 𝐺 Finding π‘ˆ and 𝑆 𝐢 πœ” 𝑦 = 𝐡 𝑓 𝑗𝑙𝑦 + 𝐢 𝑓 βˆ’π‘—π‘™π‘¦ 𝑦 < βˆ’π‘, 𝑦 < 𝑏, πœ” 𝑦 = 𝐷 sin(π‘šπ‘¦) + 𝐸 cos(π‘šπ‘¦) πœ” 𝑦 = 𝐺 𝑓 𝑗𝑙𝑦 𝑦 > 𝑏, 𝐡 𝑓 βˆ’π‘—π‘™π‘ + 𝐢𝑓 𝑗𝑙𝑏 = βˆ’π· sin π‘šπ‘ + 𝐸 cos π‘šπ‘ Boundary conditions: 𝑗𝑙 𝐡 𝑓 βˆ’π‘—π‘™π‘ βˆ’ 𝐢𝑓 𝑗𝑙𝑏 = π‘š [𝐷 cos π‘šπ‘ + 𝐸 sin π‘šπ‘ ] 𝑦 = βˆ’π‘ 𝐷 sin π‘šπ‘ + 𝐸 cos π‘šπ‘ = 𝐺 𝑓 𝑗𝑙𝑏 𝑦 = 𝑏 π‘š [𝐷 cos π‘šπ‘ βˆ’ 𝐸 sin π‘šπ‘ = 𝑗𝑙 𝐺 𝑓 𝑗𝑙𝑏 Simple to exclude 𝐷 and 𝐸 (similar combinations), then 2 equations with 𝐡, 𝐢, 𝐺 𝑓 βˆ’2𝑗𝑙𝑏 2𝑛𝐹 Finally 𝐺 = 𝐡 𝑙 = cos 2π‘šπ‘ βˆ’ 𝑗 sin 2π‘šπ‘ (𝑙 2 + π‘š 2 ) ℏ 2π‘™π‘š 2𝑛 𝐹 + π‘Š 𝐢 = 𝑗 sin 2π‘šπ‘ 0 π‘š = (π‘š 2 βˆ’ 𝑙 2 ) 𝐺 ℏ 2π‘™π‘š

  5. Finding π‘ˆ and 𝑆 𝐡 𝐺 πœ” 𝑦 = 𝐡 𝑓 𝑗𝑙𝑦 + 𝐢 𝑓 βˆ’π‘—π‘™π‘¦ 𝐹 𝑦 < βˆ’π‘, 𝐢 πœ” 𝑦 = 𝐺 𝑓 𝑗𝑙𝑦 𝑦 > 𝑏, βˆ’π‘Š 0 π‘ˆ = 𝐺 2 1 Transmission 𝐡 2 = probability 2 π‘Š 0 ) sin 2 2𝑏 0 1 + 2𝑛 𝐹 + π‘Š 0 ℏ 4𝐹(𝐹 + π‘Š Reflection (too long from 𝐢 2 / 𝐡 2 ) 𝑆 = 1 βˆ’ π‘ˆ probability 0 = π‘œ 2 𝜌 2 ℏ 2 2𝑏 2𝑛(𝐹 + π‘Š 0 ) = π‘œπœŒ ⟺ 𝐹 + π‘Š Remark. π‘ˆ = 1 if 2𝑛 2𝑏 2 ℏ This is exactly the β€œsimple” energy quantization (in infinite well). Explanation: destructive interference of reflected waves (similar to anti-reflective coating with quarter-wavelength films).

  6. Now wave incident from the right 𝐺 𝐹 𝐢 𝐻 πœ” 𝑦 = 𝐢 𝑓 βˆ’π‘—π‘™π‘¦ 𝑦 < βˆ’π‘, βˆ’π‘Š πœ” 𝑦 = 𝐺 𝑓 𝑗𝑙𝑦 + 𝐻 𝑓 βˆ’π‘—π‘™π‘¦ 0 𝑦 > 𝑏, Similarly, we can find transmission and reflection coefficients r = 𝑒 r 2 = 𝐢 2 r 2 = 𝐺 2 π‘ˆ 𝑆 r = 𝑠 π‘ˆ r + 𝑆 r = 1 𝐻 2 𝐻 2 In our case because of symmetry π‘ˆ r = π‘ˆ l = π‘ˆ 𝑆 r = π‘ˆ l = 𝑆 However, this is always true (for any potential π‘Š 𝑦 and possibly different masses)

  7. π‘ˆ and 𝑆 in general case 𝐹 π‘Š βˆ’βˆž β‰  π‘Š ∞ π‘Š βˆ’βˆž π‘Š +∞ π‘Š 𝑦 and/or 𝑛 1 β‰  𝑛 2 𝑛 1 𝑛 2 𝐺 𝐡 𝐢 𝑆 = 𝐢 2 𝐡 2 = 𝑠 2 π‘ˆ + 𝑆 = 1 π‘ˆ = 𝐺 2 = 𝐺 2 = 𝐺 2 𝐹 βˆ’ π‘Š(+∞) 𝑛 1 𝑙 2 /𝑛 2 𝑀 2 = 𝑒 2 𝑀 2 𝐡 2 𝐡 2 𝐡 2 𝐹 βˆ’ π‘Š(βˆ’βˆž) 𝑛 2 𝑙 1 /𝑛 1 𝑀 1 𝑀 1 2𝑛 πœ” π‘’πœ” βˆ— 𝐾 = 𝑗ℏ 𝑒𝑦 βˆ’ πœ” βˆ— π‘’πœ” (remember that 𝑛 βˆ’1 π‘’πœ” Why? Probability current 𝑒𝑦 is 𝑒𝑦 π‘’πœ” 𝑒𝑦 ) 𝐾 = 𝐡 2 ℏ𝑙 continuous, not just If πœ” 𝑦 = 𝐡 𝑓 𝑗𝑙𝑦 , then 𝑛 = 𝐡 2 𝑀 The same velocity for reflection, but may be different for transmission

  8. Transmission/reflection for  -potential 𝛽 πœ€ 𝑦 𝐡 𝑓 𝑗𝑙𝑦 𝐺 𝑓 𝑗𝑙𝑦 𝑙 = 2𝑛𝐹/ℏ π‘Š 𝑦 = 𝛽 πœ€ 𝑦 𝐹 > 0 𝐢 𝑓 βˆ’π‘—π‘™π‘¦ 𝐻 𝑓 βˆ’π‘—π‘™π‘¦ βˆ’ ℏ 2 𝑒 2 πœ” 𝑒𝑦 2 + π‘Š(𝑦)πœ” = πΉπœ” TISE 2𝑛 𝜁 βˆ’ ℏ 2 2𝑛 πœ” β€² 𝜁 βˆ’ πœ” β€² βˆ’πœ + 𝛽 πœ”(0) = 0 … β‡’ Integrate TISE near zero, 𝜁 β†’ 0 βˆ’πœ π‘’πœ”(+0) βˆ’ π‘’πœ” βˆ’0 = 2𝑛𝛽 ℏ 2 πœ”(0) 𝑒𝑦 𝑒𝑦 With  -potential, π‘’πœ”/𝑒𝑦 has a step (not continuous). Boundary conditions 𝐡 + 𝐢 = 𝐺 + 𝐻 𝑗𝑙 𝐺 βˆ’ 𝐻 βˆ’ 𝑗𝑙(𝐡 βˆ’ 𝐢) = 2𝑛𝛽 ℏ 2 (𝐡 + 𝐢) βˆ’π‘— 𝑛𝛽 If 𝐻 = 0 (incident 𝐢 𝐺 1 ℏ 2 𝑙 𝐡 = 𝐡 = , from the left), then 1 + 𝑗 𝑛𝛽 1 + 𝑗 𝑛𝛽 ℏ 2 𝑙 ℏ 2 𝑙

  9. [not included into this course] Scattering matrix (now waves incident from both sides) 𝐡 𝐺 For simplicity assume 𝐻 𝐢 π‘Š βˆ’βˆž = π‘Š ∞ , 𝑛 1 = 𝑛 2 π‘Š 𝑦 𝑦 β†’ βˆ’βˆž 𝑦 β†’ ∞ πœ” 𝑦 = 𝐡𝑓 𝑗𝑙𝑦 + 𝐢𝑓 βˆ’π‘—π‘™π‘¦ πœ” 𝑦 = 𝐺𝑓 𝑗𝑙𝑦 + 𝐻𝑓 βˆ’π‘—π‘™π‘¦ Out of 4 wave amplitudes ( 𝐡, 𝐢, 𝐺, 𝐻 ), 2 free parameters, and the other 2 can be calculated (linear relations) Why 2 free parameters? 1) it was 2 in rectangular well 2) TISE is a second-order dif. eq. οƒž 2 boundary conditions Suppose we found transmission/reflection amplitudes ( 𝑒 π‘š , 𝑠 π‘š ) for the wave incident from the left and also from the right ( 𝑒 𝑠 , 𝑠 𝑠 ). It is convenient to write these 4 complex numbers as a 2 Γ— 2 matrix. 𝐢 𝑇 𝐡 𝑇 = 𝑠 𝑒 𝑠 = 𝑇 11 𝑇 12 = π‘š What is the meaning? 𝐺 𝐻 𝑒 π‘š 𝑠 𝑇 21 𝑇 22 𝑠 (outgoing via incoming) (scattering matrix)

  10. Scattering matrix ( S -matrix) 𝐡 𝐺 For simplicity assume 𝐻 𝐢 π‘Š βˆ’βˆž = π‘Š ∞ , 𝑛 1 = 𝑛 2 π‘Š 𝑦 𝑦 β†’ βˆ’βˆž 𝑦 β†’ ∞ πœ” 𝑦 = 𝐡𝑓 𝑗𝑙𝑦 + 𝐢𝑓 βˆ’π‘—π‘™π‘¦ πœ” 𝑦 = 𝐺𝑓 𝑗𝑙𝑦 + 𝐻𝑓 βˆ’π‘—π‘™π‘¦ 𝐢 𝑇 𝐡 𝑇 = 𝑠 𝑒 𝑠 = 𝑇 11 𝑇 12 = π‘š What is the meaning? 𝐺 𝐻 𝑒 π‘š 𝑠 𝑇 21 𝑇 22 𝑠 (outgoing via incoming) = 𝑠 π‘š 𝐡 𝐢 = 𝑒 𝑠 𝐻 𝐢 Suppose 𝐻 = 0 , then Suppose A = 0 , then 𝑒 π‘š 𝐡 𝐺 𝑠 𝑠 𝐻 𝐺 π‘š = 𝑒 π‘š 2 = 𝑇 21 2 , 𝑆 π‘š = 𝑠 π‘š 2 = 𝑇 11 2 π‘ˆ (remember that formulas for π‘ˆ 𝑠 = 𝑒 𝑠 2 = 𝑇 12 2 , 𝑆 𝑠 = 𝑠 𝑠 2 = 𝑇 22 2 in general case are different) π‘ˆ 𝑆 π‘š = 𝑆 𝑠 Let us prove (for brevity will use notation: 𝑒 π‘š = 𝑒 , 𝑠 π‘š = 𝑠 ) π‘ˆ π‘š = π‘ˆ symmetry: 𝑠

  11. Symmetry of the scattering matrix Our proof will use β€œgraphical operations” with solutions of TISE 𝐡 = 1 (conjugation = β€œtime reversal”) TISE 𝑒 𝑒 𝑠 + οƒž Conjugate solution of TISE 𝑠 βˆ’ 1 βˆ’ 𝑒 βˆ— 1 𝑒 βˆ— 𝑠 βˆ— Γ— βˆ’1 𝑠 βˆ— βˆ’π‘  βˆ— 𝑠 βˆ— 𝑠 βˆ— Now multiply by 𝑒 βˆ— βˆ’π‘  βˆ— 𝑒 οƒŸ 𝑒 𝑠 = 𝑒 therefore 𝑒 βˆ— 𝑠 = βˆ’π‘  βˆ— 𝑒 𝑠 𝑒 βˆ— βˆ’π‘  βˆ— 𝑠 βˆ’ 1 1 = 𝑒 βˆ— 𝑠 βˆ— 𝑠 𝑒 βˆ’π‘  βˆ— 𝑒 = 1 βˆ’ |𝑠| 2 = 𝑒 2 𝑇 = 𝑒 𝑒 βˆ— = 𝑒 𝑒 βˆ— 𝑒 βˆ— π‘ˆ 𝑠 = π‘ˆ π‘š οƒž 𝑆 𝑠 = 𝑆 π‘š

  12. Symmetry of the S -matrix in general case π‘Š βˆ’βˆž β‰  π‘Š ∞ , 𝑛 1 β‰  𝑛 2 Without derivation, just a result 𝑠 = βˆ’π‘  βˆ— 𝑒 𝑠 (velocity 𝑀 1 at the left, 𝑀 2 at the right) Still 𝑒 βˆ— 𝑒 2 𝑀 2 𝑒 𝑠 = 1 βˆ’ 𝑠 2 𝑀 2 = 𝑙 2 /𝑛 2 = 𝑒 𝑀 2 𝑀 1 = But 𝑀 1 𝑙 1 /𝑛 1 𝑒 βˆ— 𝑒 βˆ— 𝑀 1 𝑒 𝑀 2 𝑠 𝑀 1 𝑇 = βˆ’π‘  βˆ— 𝑒 𝑒 𝑒 βˆ— 𝑠 = 𝑒 𝑠 2 𝑀 1 = 𝑒 2 𝑀 2 π‘ˆ = π‘ˆ π‘š Then π‘ˆ 𝑠 = π‘ˆ π‘š 𝑀 2 𝑀 1 οƒž still 𝑆 𝑠 = 𝑆 π‘š 𝑆 𝑠 = 𝑆 π‘š

Recommend


More recommend