disk scattering of open and closed strings
play

Disk Scattering of Open and Closed Strings Stephan Stieberger, MPP M - PowerPoint PPT Presentation

Disk Scattering of Open and Closed Strings Stephan Stieberger, MPP M unchen New Perspectives in String Theory The Galileo Galilei Institute for Theoretical Physics, May 20, 2009 Outline I. Higher point open superstring amplitudes (tree) St.


  1. Disk Scattering of Open and Closed Strings Stephan Stieberger, MPP M¨ unchen New Perspectives in String Theory The Galileo Galilei Institute for Theoretical Physics, May 20, 2009

  2. Outline I. Higher point open superstring amplitudes (tree) St. St., T.R. Taylor 2006–2008. • Universal properties and relations II. Open & closed vs. pure open string disk amplitudes St. St., to appear very soon. • Sort of generalized KLT on the disk

  3. I. Recent results for N –point open superstring amplitudes N –point open string disk amplitudes in background with CFT description St. St., T.R. Taylor 2006–2008 Motivation: Recent results in YM in spinor basis: compact expressions, recursion relations, . . . • Computed N –point open superstring disk amplitude involving members of vector multiplets to all orders in α ′ , • Compact representation to all orders in α ′ , • Derived SUSY Ward identities to all orders in α ′ Universal Properties • completely model independent • universal to all string compactifications • any numbers of supersymmetries

  4. Examples with members of vector multiplets • 5–gluon MHV amplitude in superstring theory √ 2 , g + 3 , g + 4 , g + Tr( T 1 . . . T 5 ) ( 2 g Y M ) 3 α ′ A ( g − 1 , g − 5 ) = � 1 2 � 2 × � 3 4 � 2 � 4 5 � ( � 4 1 � [1 5] K 1 + � 4 2 � [2 5] K 2 ) • Supersymmetric Ward identities in string theory � 12 � 2 A ( g − 1 , g − 2 , g + 3 , g + 4 , . . . , g + � 34 � 2 A ( φ − 1 , φ − 2 , φ + 3 , φ + 4 , g + 5 , . . . , g + N ) = N ) • N –gluon MHV amplitude in superstring theory 2 , g + 3 , g + 4 , . . . , g + 1 − α ′ 2 ζ (2) A ( g − 1 , g − N ; α ′ ) � 2 F ( N ) � = 2 , g + 3 , g + 4 , . . . , g + N ) + O ( α ′ 3 ) A ( g − 1 , g − ×

  5. Recent results for N –point open superstring amplitudes Note: SUSY transformations within one multiplet (VM) using dz N conserved SUSY charges Q I α , I = 1 , . . . , N , with Q I � 2 πi V I • α = α ( z ) • (Space–time) SUSY transformation of open string vertex operator O dw on world–sheet disk [ Q I ( η I ) , O ( z ) ] := � 2 πi η α I V α ( w ) O ( z ) C z generates SUSY Ward identitites (valid to all orders in α ′ ) c.f. also talk at Strings 2008.

  6. Generalizations and Task • Include chiral multiplets (N=1) • Use of world–sheet supercurrent T F • Include closed strings to probe brane/bulk couplings − → Derive relations between different types of amplitudes − → Amplitudes of open and closed string moduli

  7. First look: N –point parton amplitudes in D = 4 � g = gluon V M Consider superstring disk amplitudes involving both χ = gaugino z 2 z 2 � ψ = fermion E.g.: a a CM a a φ = scalar A a 2 A a 2 z 3 z 3 z 1 z 1 in D =4 A a 3 A a 3 A a 1 A a 1 a a a a ψ β 5 ψ α 4 A a 5 A a 4 α 5 β 4 z 4 z 4 z 5 z 5 b a A ρ ( g − 1 , g + 2 , g + 3 , q − q + [ V (5) ( s j ) − 2 i P (5) ( s j ) ǫ (1 , 2 , 3 , 4) ] 4 , ¯ 5 ) = ρ ( g − 1 , g + 2 , g + 3 , q − q + A FT × 4 , ¯ 5 ) A ρ ( g − 1 , g − 2 , g + 3 , g + 4 , g + [ V (5) ( s j ) − 2 i P (5) ( s j ) ǫ (1 , 2 , 3 , 4) ] 5 ) = ρ ( g − 1 , g − 2 , g + 3 , g + 4 , g + A FT × 5 ) Striking relation to all orders in α ′ !

  8. N –point parton amplitudes in D = 4 � 12 � 4 ρ ( g − 1 , g − 2 , g + 3 , g + 4 , g + A FT i g 3 5 ) = Y M � 12 �� 23 �� 34 �� 45 �� 51 � with: � 14 � 4 � 15 � ρ ( g − 1 , g + 2 , g + 3 , q − q + A FT 4 g 3 4 , ¯ 5 ) = Y M � 12 �� 23 �� 34 �� 45 �� 51 � s 2 s 5 f 1 + 1 V (5) ( s i ) = 2 ( s 2 s 3 + s 4 s 5 − s 1 s 2 − s 3 s 4 − s 1 s 5 ) f 2 and: ǫ ( i, j, m, n ) = α ′ 2 ǫ αβµν k α i k β j k µ P (5) ( s i ) m k ν = f 2 , n � 12 � 4 A ρ ( g − 1 , g − 2 , g + 3 , g + 4 g 2 Y M V (4) ( s j ) C.f.: 4 ) = � 12 �� 23 �� 34 �� 41 � � 13 � 4 � 14 � A ρ ( g − 1 , g + 2 , q − q + 2 g 2 Y M V (4) ( s j ) 3 , ¯ 4 ) = � 12 �� 23 �� 34 �� 41 �

  9. N –point parton amplitudes in D = 4 A ( g a 1 . . . g a N )        A ( χ a 1 χ a 2 g a 1 . . . g a N − 2 )      Relations can be generalized to: A ( ψ a 1 ψ a 2 g a 1 . . . g a N − 2 )         A ( φ a 1 φ a 2 g a 1 . . . g a N − 2 )    No intermediate exchange of KKs nor windings ! g N g N g N − 1 q 1 q 1 g N − 1 g KK g 5 g 4 q 4 q 2 q 2 g 3 q 3

  10. Amplitudes important for low string scale physics Most relevant for signals from low string scale effects in QCD jets • No intermediate exchange of KKs, windings nor emmission of graviton • Useful for model–independent low–energy predictions • Universal deviation from SM in jet distribution L¨ ust, St.St., Taylor, arXiv:0807.3333 ; Anchordoqui, Goldberg, Nawata, L¨ ust, St.St., Taylor, arXiv:0808.0497, arXiv:0904.3547 ; L¨ ust, Schlotterer, St.St., Taylor, to appear

  11. Appendix: Chiral matter vertex operator Vertex operator of chiral fermion ( a, b ) a ( a,b ) b e − 1 Ξ a ∩ b ( z ) e ik ρ X ρ ( z ) V ( − 1 / 2) β ] β 1 ( z, u, k ) = g ψ [ T α 2 φ ( z ) u λ S λ ( z ) ψ α α 1 β [ g ψ =(2 α ′ ) 1 / 2 α ′ 1 / 4 e φ 10 / 2 ] Boundary changing operator Ξ a ∩ b ( z ), with h = 3 8 and: 1 � Ξ a ∩ b ( z 1 ) Ξ a ∩ b ( z 2 ) � = ( z 1 − z 2 ) 3 / 4

  12. II. Disk scattering of open and closed strings   N o N c N o N c � � V − 1 d 2 z i  � � � � � � A = : V o ( x j ) : : V c ( z i , z i ) : � dx j CKG  I π H + j =1 i =1 j =1 i =1 π ∈ S No / Z 2 z N c H + Λ i Π i z 1 z N c − 1 z 2 disk z 3 Π j Λ j x N o − 1 x N o x 1 x 2 x 3 D-brane stack V o ( x i ) = open string vertex operators inserted at x i on the boundary of the disk V c ( z i , z i ) = closed string vertex operators inserted at z i inside the disk

  13. Example: Two open and two closed strings on the disk With PSL (2 , R ) transformation three arbitray points w 1 , w 2 ∈ R and w 3 ∈ C may be mapped to the points x 1 , x 2 and z 1 : x 1 = −∞ , z 1 = − ix , x 2 = 1 , z 1 = ix , z 2 = z , z 2 = z Choice: H + z 2 = z with z ∈ H + and x ∈ R + z 1 = ix x 1 = −∞ x 2 = 1 � ∞ A (1 , 2 , 3 , 4) −∞ dx � c ( −∞ ) c (1) c ( ix ) � = � C d 2 z � : V o ( −∞ ) : : V o (1) : : V c ( − ix, ix ) : : V c ( z, z ) : � ×

  14. Two open & two closed strings versus six open strings on the disk • generic structure of world–sheet disk amplitude of two open & two closed strings : ∞ � � α 1 ,λ 1 ,γ 1 ,β 1 � � W ( κ,α 0 ) dx x α 0 (1 + ix ) α 1 (1 − ix ) α 2 d 2 z (1 − z ) λ 1 (1 − z ) λ 2 = α 2 ,λ 2 ,γ 2 ,β 2 −∞ C ( z − z ) κ ( z − ix ) γ 1 ( z − ix ) γ 2 ( z + ix ) β 1 ( z + ix ) β 2 × Oprisa • generic structure of world–sheet disk amplitude of six open strings : St.St., 2005 1 1 1 � � n 1 ,n 2 ,n 3 � � � dz x p 23 + n 1 y p 23 + k 24 + p 34 + n 2 z p 16 + n 3 F = dx dy n 4 ,n 5 ,n 6 ,n 7 ,n 8 ,n 9 0 0 0 (1 − x ) p 34 + n 4 (1 − y ) p 45 + n 5 (1 − z ) p 56 + n 6 (1 − xy ) p 35 + n 7 × (1 − yz ) p 46 + n 8 (1 − xyz ) p 36 + n 9 × n i ∈ Z ,

  15. Two open & two closed strings versus six open strings on the disk After splitting the complex integral into holomorphic and anti–holomorphic pieces: Analytic continuation, introduce ξ = z 1 + iz 2 , η = z 1 − iz 2 , ρ = ix , ρ, ξ, η ∈ R . ∞ � � α 1 ,λ 1 ,γ 1 ,β 1 dρ | ρ | α 0 | 1 + ρ | α 1 | 1 − ρ | α 2 W ( κ,α 0 ) 1 � = 2 α 2 ,λ 2 ,γ 2 ,β 2 −∞ ∞ ∞ dη | 1 − ξ | λ 1 | ξ − ρ | γ 1 | ξ + ρ | β 1 � � × dξ −∞ −∞ | 1 − η | λ 2 | η − ρ | γ 2 | η + ρ | β 2 | ξ − η | κ Π( ρ, ξ, η ) × Six open strings, with: Answer: 1 k k 1 3 2 z 1 = −∞ , z 3 = − ρ, z 2 = 1 , z 4 = ρ, z 5 = ξ, z 6 = η k 1 k 2 5 1 2 k2 2 k p 1 = k 1 , p 2 = k 2 , 6 p 3 = p 4 = 1 p 5 = p 6 = 1 2 k 3 , 2 k 4 k 1 k1 4 2

  16. Two open & two closed strings versus six open strings on the disk

  17. Two open & two closed strings versus six open strings on the disk After inspecting phase Π( ρ, ξ, η ) : � � α 1 ,λ 1 ,γ 1 ,β 1 W ( κ,α 0 ) = σ γ sin( πβ 2 ) [ A (163542) + A (163524) + A (164532)] α 2 ,λ 2 ,γ 2 ,β 2 + sin( πλ 2 ) [ A (134526) + A (143526)] + σ λ σ γ sin( πγ 2 ) A (132546) + R  A (163542) : z 1 < z 6 < z 3 < z 5 < z 4 < z 2    A (163524) : z 1 < z 6 < z 3 < z 5 < z 2 < z 4      A (134526) :  z 1 < z 3 < z 4 < z 5 < z 2 < z 6  with the six open string orderings A (132546) : z 1 < z 3 < z 2 < z 5 < z 4 < z 6     A (164532) : z 1 < z 6 < z 4 < z 5 < z 3 < z 2      A (143526) : z 1 < z 4 < z 3 < z 5 < z 2 < z 6 

Recommend


More recommend