fictions fluctuations and mean fields
play

Fictions, fluctuations and mean fields Pasi Huovinen Uniwersytet - PowerPoint PPT Presentation

Fictions, fluctuations and mean fields Pasi Huovinen Uniwersytet Wroc lawski Constraining the QCD Phase Boundary with Data from Heavy Ion Collisions February 12, 2018, GSI, Darmstadt in collaboration with Peter Petreczky, arXiv:1708.00879


  1. Fictions, fluctuations and mean fields Pasi Huovinen Uniwersytet Wroc� lawski Constraining the QCD Phase Boundary with Data from Heavy Ion Collisions February 12, 2018, GSI, Darmstadt in collaboration with Peter Petreczky, arXiv:1708.00879 The speaker has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sk� lodowska-Curie grant agreement No 665778 via the National Science Center, Poland, under grant Polonez DEC-2015/19/P/ST2/03333

  2. Fiction , noun A fictitious particle, i.e. a particle predicted by some model without solid empirical evidence for its existence P. Huovinen @ GSI, February 12, 2018 1/29

  3. Fluctuations of conserved charges T n ∂ n P/T 4 � χ X � = n � ∂µ n � X µ X =0 T n + m ∂ n + m P/T 4 � χ XY � = � nm ∂µ n X ∂ m � Y µ X =0 , µ Y =0 0.35 0.35 free quark gas B χ 2 0.3 0.3 0.25 0.25 PDG-HRG cont. extrap. 0.2 0.2 T c =(154 +/-9) MeV N τ =16 12 0.15 0.15 8 6 0.1 0.1 m s /m l =20 (open) 27 (filled) 0.05 0.05 T [MeV] 0 0 140 140 160 160 180 180 200 200 220 220 240 240 260 260 280 280 Bazavov et al., PRD95, 054504 (2017) P. Huovinen @ GSI, February 12, 2018 2/29

  4. Black on black! P. Huovinen @ GSI, February 12, 2018 3/29

  5. More resonances? BS / χ 2 S - χ 11 0.30 0.25 cont. est. PDG-HRG 0.20 QM-HRG N τ =6: open symbols 0.15 N τ =8: filled symbols S /M 1 S B 1 S /M 2 S 0.45 B 2 S /M 1 S B 2 0.35 0.25 T [MeV] 0.15 140 150 160 170 180 190 Bazavov et al., PRL113, 072001 (2014) P. Huovinen @ GSI, February 12, 2018 4/29

  6. Baryon spectrum 3 2.5 M (GeV) 2 1.5 1 S=0 S=1 S=2 S=3 Blue: Particle Data Group P. Huovinen @ GSI, February 12, 2018 5/29

  7. Baryon spectrum 3 2.5 M (GeV) 2 1.5 1 S=0 S=1 S=2 S=3 Blue: Particle Data Group Red: PDG + L¨ oring et al., EPJA10, 395 (2001) & EPJA10, 447 (2001) P. Huovinen @ GSI, February 12, 2018 6/29

  8. Hadron spectrum mesons baryons 3 2.5 2 M (GeV) 1.5 1 0.5 0 S=0 S=1 S=0 S=1 S=2 S=3 Blue: Particle Data Group Red: PDG + L¨ oring et al., EPJA10, 395 (2001) & EPJA10, 447 (2001) Black: PDG + Ebert et al., PRD79, 114029 (2009) P. Huovinen @ GSI, February 12, 2018 7/29

  9. Trace anomaly 4.5 Budapest-Wuppertal 4 hotQCD HRG 3.5 3 ( ε -3P)/T 4 2.5 2 1.5 1 0.5 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 8/29

  10. Trace anomaly 4.5 Budapest-Wuppertal 4 hotQCD HRG 3.5 HRG+ 3 ( ε -3P)/T 4 2.5 2 1.5 1 0.5 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 9/29

  11. χ 2 B 0.2 B χ 2 0.15 0.1 0.05 hotQCD B-W HRG 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 10/29

  12. χ 2 B 0.2 B χ 2 0.15 0.1 0.05 hotQCD B-W HRG HRG+ 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 11/29

  13. χ 11 BS 0.2 BS χ 11 0.15 0.1 0.05 hotQCD HRG 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 12/29

  14. χ 11 BS 0.2 BS χ 11 0.15 0.1 0.05 hotQCD HRG HRG+ 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 13/29

  15. χ 2 S 0.6 S χ 2 0.5 0.4 0.3 0.2 0.1 B-W HRG 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 14/29

  16. χ 2 S 0.6 S χ 2 0.5 0.4 0.3 0.2 B-W 0.1 HRG HRG+ 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 15/29

  17. Differences of fluctuations Filled symbols: HISQ Bazavov et al., PRL111, 082301 (2013) PRD95, 054504 (2017) Open symbols: stout 4th order Bellwied et al., PRD92, 114505 (2015) 6h order D’Elia et al,. PRD95, 094503 (2017) • These zero in Boltzmann approximation P. Huovinen @ GSI, February 12, 2018 16/29

  18. Virial expansion P = P i deal + T � b ij 2 ( T ) e βµ i e βµ j ij b ij 2 can be related to the S-matrix of scattering of particles i and j • ππ , πN , etc. scatterings dominated by resonance formation • no resonances in NN scatterings P. Huovinen @ GSI, February 12, 2018 17/29

  19. Virial expansion in nucleon gas P ( T, µ ) = P 0 ( T ) cosh( βµ ) + 2 b 2 ( T ) T cosh(2 βµ ) 4 m 2 T 2 P 0 ( T ) = K 2 ( βm ) π 2 � ∞ � � � d E − d S † � mE � b 2 ( T ) = 2 T mE 4 i Tr[ S † d S 1 + m 2 + m 2 d E K 2 2 β d E S ] π 3 2 2 0 P. Huovinen @ GSI, February 12, 2018 18/29

  20. Virial expansion in nucleon gas Elastic part of the S-matrix from scattering phase shift: d E − d S † � d δ J,I =0 + 3d δ J,I =1 � 4 i Tr[ S † d S 1 � � s s d E S ] → (2 J + 1) d E d E s J Workman et al., PRC94, 065203 (2016); Arndt et al., PRC76, 025209 (2007) P. Huovinen @ GSI, February 12, 2018 19/29

  21. Repulsive mean field Assume: interactions reduce single partice energy by U = Kn b where n b is single nucleon density ( Olive, NPB190, 483 (1981) ) d 3 p � (2 π ) 3 e − β ( E p − µ + U ) n b = Small µ ⇒ βKn b ≪ 1 and n 0 b (1 − βKn 0 n b b ) ⇒ ≈ b ) − K b ) 2 + ( n 0 ( n 2 b ) 2 � � P ( T, µ ) = T ( n b + n ¯ ¯ 2 or � � cosh( βµ ) − Km P ( T, µ ) = P 0 ( T ) π 2 K 2 ( βm ) cosh(2 βµ ) P. Huovinen @ GSI, February 12, 2018 20/29

  22. Virial expansion vs. mean field Repulsive mean field Virial expansion P ( T, µ ) = P 0 ( T ) × P ( T, µ ) = P 0 ( T ) × cosh( βµ ) − ¯ cosh( βµ ) − Km � � � � π 2 K 2 ( βm ) cosh(2 βµ ) b 2 ( T ) K 2 ( βm ) cosh(2 βµ ) where ¯ 2 T b 2 ( T ) b 2 = P 0 ( T ) K 2 ( βm ) P. Huovinen @ GSI, February 12, 2018 21/29

  23. Trace anomaly 4.5 B-W 4 hotQCD HRG 3.5 HRG-mean 3 ( ε -3P)/T 4 2.5 2 1.5 1 0.5 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 22/29

  24. Trace anomaly 4.5 B-W 4 hotQCD HRG 3.5 HRG-mean HRG+ 3 HRG+ mean ( ε -3P)/T 4 2.5 2 1.5 1 0.5 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 23/29

  25. χ 2 B 0.2 B χ 2 0.15 0.1 0.05 hotQCD B-W HRG HRG-mean 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 24/29

  26. χ 2 B 0.2 B χ 2 0.15 0.1 hotQCD B-W 0.05 HRG HRG-mean HRG+ HRG+ mean 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 25/29

  27. χ 11 BS 0.2 BS χ 11 0.15 hotQCD 0.1 HRG HRG-mean 0.05 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 26/29

  28. χ 11 BS 0.2 BS χ 11 0.15 hotQCD HRG HRG-mean 0.1 HRG+ HGR+ mean 0.05 0 100 120 140 160 180 200 T (MeV) P. Huovinen @ GSI, February 12, 2018 27/29

  29. Differences of fluctuations Filled symbols: HISQ Bazavov et al., PRL111, 082301 (2013) PRD95, 054504 (2017) Open symbols: stout 4th order Bellwied et al., PRD92, 114505 (2015) 6h order D’Elia et al,. PRD95, 094503 (2017) • These zero in Boltzmann approximation • Repulsive interactions create similar differences P. Huovinen @ GSI, February 12, 2018 28/29

  30. Summary • lattice QCD indicates there are more resonances than observed – inclusion of quark model states improves the fit to some, and weakens the fit to some observables • repulsive mean field can describe the differences between baryonic fluctuations of different orders • mean field strength can be constrained by phase shifts P. Huovinen @ GSI, February 12, 2018 29/29

  31. Summary • lattice QCD indicates there are more resonances than observed – inclusion of quark model states improves the fit to some, and weakens the fit to some observables • repulsive mean field can describe the differences between baryonic fluctuations of different orders • mean field strength can be constrained by phase shifts P. Huovinen @ GSI, February 12, 2018 29/29

  32. Summary • lattice QCD indicates there are more resonances than observed – inclusion of quark model states improves the fit to some, and weakens the fit to some observables • repulsive mean field can describe the differences between baryonic fluctuations of different orders • mean field strength can be constrained by phase shifts P. Huovinen @ GSI, February 12, 2018 29/29

  33. Hadron Resonance Gas with mean field Assume: only members of baryon octet and decuplet repel each other P ( T, µ ) = Tn − K od ) 2 + ( n 0 ( n 0 od ) 2 � � ¯ 2 where n od ( T ) = T � g i m 2 i K 2 ( βm i ) 2 π 2 i i = N, Σ , Ξ , ∆ , Σ ∗ , Ξ ∗ , Ω P. Huovinen @ GSI, February 12, 2018 30/29

  34. Hadron Resonance Gas with mean field Assume: only members of baryon octet and decuplet repel each other P ( T, µ ) = Tn − K od ) 2 + ( n 0 ( n 0 od ) 2 � � ¯ 2 where n od ( T ) = T � g i m 2 i K 2 ( βm i ) 2 π 2 i i = N, Σ , Ξ , ∆ , Σ ∗ , Ξ ∗ , Ω χ B (0) − 2 n β 4 K ( n 0 od ) 2 χ B = n n χ BS (0) + 2 n +1 β 5 Kn 0 od ( P S 1 B + 2 P S 2 B + 3 P S 3 χ BS = B ) n 1 n 1 P. Huovinen @ GSI, February 12, 2018 31/29

Recommend


More recommend