yasunori nomura
play

Yasunori Nomura UC Berkeley; LBNL Dark Matter Existence is well - PowerPoint PPT Presentation

Yasunori Nomura UC Berkeley; LBNL Dark Matter Existence is well established Rotation curves of galaxies Cosmic microwave background radiation b h 2 = 0.02273 0.00062 M h 2 = 0.1099 0.0063 + 0.026 ( h = 0.719 ) -


  1. Yasunori Nomura UC Berkeley; LBNL

  2. Dark Matter Existence is well established Rotation curves of galaxies Cosmic microwave background radiation Ω b h 2 = 0.02273 ± 0.00062 Ω M h 2 = 0.1099 ± 0.0063 + 0.026 ( h = 0.719 ) - 0.027 WMAP only (5 years) What is it?

  3. Model-independent knowledge quite limited ― wide range of mass and interaction strengths allowed Connection to particle physics? DM as a thermal relic of the early universe increasing ‹ σ v › ~ n DM /n γ freezeout H = Γ ‹ σ v › = n DM Equilibrium / n γ = const n DM m / T (time → ) Annihilation cross section determined g 2 1 ‹ σ v › ~ 8 π (TeV) 2 weak interaction strength … Weakly Interacting Massive Particle (WIMP)

  4. Hints? PAMELA FERMI H.E.S.S. DAMA

  5. Outline • New signals in e + / e - – Dark matter annihilation – Dark matter decay • DAMA signals of course, could be astrophysics/experimental — should not stop explorations until issues settled Potential strong implications for particle/astrophysics … important opportunity ( cf. success of the standard model ― gauge principle, quarks, leptons, … )

  6. New Signals in e + / e - PAMELA data clear rise of the positron fraction above ~ 10 GeV Adriani et al. , arXiv:0810.4995 solar modulation effect ― Astrophysics? ― Dark matter annihilation? cf. Cirelli’s talk ― Dark matter decay? cf. Ibarra’s talk

  7. Dark Matter Annihilation “Interesting’’ ― many other (astrophysical) signatures are “close’’ (WMAP haze, …) Issues • Leptonic final states: There is no “anomaly’’ in the antiproton data Adriani et al. , arXiv:0810.4994 • Large boost factor: Larger ‹ σ v › needed B‹ σ v › B [cm 3 /sec] ‹ σ v › = B ‹ σ v › 0 Cirelli, Kadastik, Raidal, Strumia DM mass [GeV]

  8. Various ways to obtain Leptonic final states ― Kinematics Cholis, Goodenough, Weiner; … ― Couplings Large boost factor ― Nonperturbative effects (Sommerfeld, boundstate) Hisano, Matsumoto, Nojiri, Saito; Pospelov, Ritz; … ― Nonthermal production ― Resonance effects Ibe, Murayama, Yanagida; … ― … (astrophysical...) cf. Hisano’s talk Various combinations possible not “standard” WIMPs Let’s see several realizations → particle physics implications

  9. New (sub-)GeV scale dark sector Arkani-Hamed, Finkbeiner, Slatyer, Weiner (’08) DM ψ is charged under new gauge force mediated by X μ ~ 100GeV–1TeV, m X ~ 100MeV–1GeV m ψ existence of new sub-GeV dark sector Dark gauge field X μ mixes with photon A μ ε L = X μν ( ε F μν naturally O (10 -3 )) 2 Leptonic final states < 2 m μ : e + e - m φ ~ : 50% e + e - , 50% μ + μ - 2 m μ < m φ < 2 m π ~ ~ Nonperturbative < GeV: 40% e + e - , 40% μ + μ - , 20% π + π - 2 m π < m φ ~ ~ enhancement

  10. Tension with direct detection → need splitting of O (100keV–MeV) in ψ ? ( → DAMA?) Dark gauge bosons ― Low energy e + e - collider ― High intensity deam-dump Essig, Schuster, Toro; Reece, Wang; … Lepton jets at the LHC Arkani-Hamed, Weiner

  11. Dark matter through the axion portal Y.N., Thaler (’08) DM talks to standard model through a light axion-like state(s) simplest ― DM and Higgs obtain masses from the same source (symmetry breaking of U(1) X ↔ U(1) PQ ) Minimal model (SUSY) ‹ S › ≠ 0 W = λ SH u H d + ξ S ΨΨ SUSY breaking ~ λ ‹ S ›, m Ψ ~ ξ ‹ S › m weak DM S → s + i a ~GeV scalar light “axion’’ Leptonic final states Nonperturbative enhancement

  12. Axion mass 2 m e 2 m μ - m π ~ m ρ + m π m K m a No leptonic gamma ray 1.0 MeV 210 MeV 360 MeV 800 MeV decay constraints K → π a with beam-dump a → μ + μ - exp. at CERN [CHARM] a → μ + μ - = μ ) ( ℓ 360 MeV < m a < 800 MeV ~ ~ Satisfy all constraints B -factory signals LHC signals h → aa → 4 μ • Br( Υ → γ a ) ~ 10 -6 • pairs/quartets of Br [10 -6 ] collimated μ ’s m a [GeV] BaBar collab., arXiv:0902.2176

  13. Leptophilic dark matter Fox, Poppitz (’08); also Cirelli, Kalastik, Raidal, Strumia (’08) New U(1) gauge force under which only DM and leptons are charged • U(1) is broken at O (1 – 10 GeV) • < 10 -3 (« ~ O (1)) g ℓ g ψ Leptonic final states e + μ , e + τ , or μ + τ Nonperturbative enhancement → neutrino flux from the sun/earth

  14. Astrophysical constraints Photons (galactic center region, dwarf galaxies, …) Bell, Jacques; Bertone, Cirelli, Strumia, Taoso; Bergstrom, Bertone, Bringmann, Edsjo, Taoso; Mardon, Y.N., Stolarski, Thaler; Meade, Papucci, Volansky; … Neutrinos Hisano, Kawasaki, Kohri, Nakayama ; Liu, Yin, Zhu; Mardon, Y.N., Stolarski, Thaler; Meade, Papucci, Volansky; … … nontrivial but model dependent (astrophysics, particle physics) … cascade helps diffuse gamma Kamionkowski, Profumo ; … BBN Hisano, Kawasaki, Kohri, Moroi, Nakayama ; … CMB Galli, Iocco, Bertone, Melchiorri ; … … boost factor “saturated’’

  15. Dark Matter Decay DM sector (typically) more isolated ― safer ( ρ 2 ρ ) v.s. Issues • Leptonic final states: ― to a lesser extent • Lifetime: τ ~ 10 26 sec Nardi, Sannino, Strumia … Dimension-6 operators (GUT scale physics) Arvanitaki, Dimopoulos, Dubovsky, Graham, Harnik, Rajendran; Nardi, Sannino, Strumia; …

  16. Singlet dark matter with SUSY Arvanitaki, Dimopoulos, Dubovsky, Graham, Harnik, Rajendran (’08) • Leptonic final states ― GUT-scale physics e.g. > m ℓ m χ leptons χ : ― kinematics < m ℓ m χ Hidden gauge boson Chen, Nojiri, Takahashi, Yanagida (’08) ― gauge charges (couplings)

  17. New FERMI/H.E.S.S. Data ( μ , τ , cascades, …) Smooth spectrum ~ TeV (or m χ « TeV) e.g. Axion portal Bergström, Edsjö, Zaharijas

  18. … relatively simple setup/models explain data True story? → We don’t know … future data will tell (anisotropy, gamma ray, …) Motivates new signatures to look at • Low energy (e.g. ~ GeV) dark/hidden sector • Light axion-like states • … … something we could do, but didn’t focus → discovery?

  19. DAMA signals DAMA annual modulation Bernabei et al. , Eur. Phys. J. C56 , 333 (’08) Possible explanations ― light (~ 10 GeV) dark matter ― electron recoil “marginal’’ ― inelastic dark matter 10GeV Savage, Freese, Gondolo, Spolyar

  20. Inelastic dark matter Smith, Weiner (’01) Two dark states with Δ m ~ O (100keV) ψ 2 ψ 1 … scatters (only) inelastically N The minimum velocity depends on nuclei [ σ (cm 2 )] Log 10 Δ m (keV) Ciu, Morrissey, Poland, Randall Naturally obtained via symmetry breaking = M ψψ + m ( ψψ + ψψ ) m « e.g. L M

  21. Conclusions Dark Matter → We must/want to know what it is Hints? ― PAMELA, FERMI, H.E.S.S., DAMA, … If any of these results is associated with DM, DM cannot be “standard” (except possibly PAMELA) absolutely-stable, thermally produced, weakly interacting, vanilla dark matter Physics of dark matter may be much richer than imagined … tremendous implication and particle/astrophysics Clearly an exciting time! — in many respects!

Recommend


More recommend