feedback control and visual servoing
play

Feedback Control and Visual Servoing Lecture 11 What will you take - PowerPoint PPT Presentation

Feedback Control and Visual Servoing Lecture 11 What will you take home today? Introduction to Control Recap - PD Controllers PID Controllers Visual Servoing Different Formulations Interaction Matrix Control Law Case-Study: Learning-based


  1. Feedback Control and Visual Servoing Lecture 11

  2. What will you take home today? Introduction to Control Recap - PD Controllers PID Controllers Visual Servoing Different Formulations Interaction Matrix Control Law Case-Study: Learning-based approach

  3. Joint Space - PD Controller Proportional – Derivative control law in joint space

  4. Joint Space Control

  5. Passive Natural Systems - Conservative k m x

  6. Passive Natural Systems - Conservative = 1 2 V kx 2 x t

  7. Passive Natural System – Dissipative k m x Friction x x x x

  8. Passive Natural System – Dissipative + + = 0 !! ! mx bx kx k m x Friction x b k x x x + + = 0 !! ! x m x m x Natural frequency damping x x x t t t Over Oscillatory Critically damped damped damped

  9. Critically Damped System – Choose B + + = 0 !! ! mx bx kx b k + + = 0 !! ! x m x m x bm w n m 2 m × w 2 2 n w w 2 2 n n Natural damping ratio as a reference value b b Critically = 2 x = 2 damped n w m km when m b/m=2 w n n Critically damped system: x n = = 1 ( b 2 km )

  10. 1 DOF Robot Control V(x) f m x x d x 0 x 0 x d

  11. Asymptotic Stability – Converging to a value f m x 0 x d

  12. Test yourself

  13. Control Partitioning

  14. Non-Linearity f m x d x 0 f ¢ f + ( , ! ) m ˆ x x System +

  15. Disturbance rejection f dist x ¢ f f d ¢ k p + + System - + ¢ k v + -

  16. Steady-State Error f + ¢ + ¢ = !! ! e k e k e dist v p m The steady-state

  17. Example f f dist m k p f dist m k v x x x x

  18. PID controller

  19. Test yourself

  20. What will you take home today? Introduction to Control Recap - PD Controllers PID Controllers Visual Servoing Different Formulations Interaction Matrix Control Law Case-Study: Learning-based approach

  21. Camera-Robot Configurations Image from: CHANG, W., WU, C.. Hand-Eye Coordination for Robotic Assembly Tasks. International Journal of Automation and Smart Technology ,

  22. Image-based visual servoing Current Image Goal Image

  23. Camera Motion to Image Motion ω x ω z v x v z ω y v y Slides adapted from Peter Corke

  24. The Image Jacobian ω f = f v ) T ( ˙ u, ˙ ˆ ρ ( X, Y, Z ) T 0 1 v x v v y ✓ ˙ B C ✓ − ˆ uv/ ˆ − ( ˆ f + u 2 / ˆ ◆ ◆ B C u f/Z 0 u/Z f f ) v v z B C = − ˆ f + u 2 / ˆ ˆ − uv/ ˆ B C v ˙ 0 f/Z v/Z f f − u ω x B C B C ω y @ A ω z Slides adapted from Peter Corke

  25. f = [ u, v ] T Camera Motion to Image Motion r = [ v x , x y , v z , ω x , ω y , ω z ] T ˙ ω x ω z v x v z ω y v y Slides adapted from Peter Corke

  26. Optical flow Patterns Slides adapted from Peter Corke

  27. Image-based visual servoing Getting a camera velocity to minimize the error between the current and goal image Current Image Goal Image

  28. Image-based visual servoing Current Image Goal Image J ( u, v, Z ) 0 1 v x v y B C − ˆ uv/ ˆ − ( ˆ f + u 2 / ˆ ✓ ◆ ✓ ◆ B C u ˙ f/Z 0 u/Z f f ) v v z B C = − ˆ f + u 2 / ˆ ˆ − uv/ ˆ B C v ˙ 0 f/Z v/Z f f − u ω x B C B C ω y @ A ω z Slides adapted from Peter Corke

  29. Image-based visual servoing     ˙ u 1 v x Current Image Goal Image ˙ v 1 v y       J ( u 1 , v 1 , Z 1 )     ˙ u 2 v z     J ( u 2 , v 2 , Z 2 ) =       ˙ v 2 ω x     J ( u 3 , v 3 , Z 3 )     ˙ u 3 ω y     ˙ v 3 ω z

  30. Image-based visual servoing     ˙ u 1 v x ˙ v 1 v y       J ( u 1 , v 1 , Z 1 )     ˙ u 2 v z     = J ( u 2 , v 2 , Z 2 )       ˙ v 2 ω x     J ( u 3 , v 3 , Z 3 )     ˙ u 3 ω y     ˙ v 3 ω z     ˙ v x u 1 ˙ v y v 1 − 1       J ( u 1 , v 1 , Z 1 )     ˙ v z u 2     J ( u 2 , v 2 , Z 2 ) =       ˙ v 2 ω x     J ( u 3 , v 3 , Z 3 )     ˙ u 3 ω y     ˙ v 3 ω z

  31. Desired Pixel Velocity Slides adapted from Peter Corke

  32. Simulation Slides adapted from Peter Corke

  33. Point Correspondences How to find them? Features, Markers

  34. What will you take home today? Introduction to Control Recap - PD Controllers PID Controllers Visual Servoing Different Formulations Interaction Matrix Control Law Case-Study: Learning-based approach

  35. Training Deep Neural Networks for Visual Servoing Bateux et al. ICRA 2018 1. Instead of using features, use the whole image to compare to given goal image a. Challenge: Small convergence region due to non-linear cost function

  36. Training Deep Neural Networks for Visual Servoing Bateux et al. ICRA 2018

  37. Training Deep Neural Networks for Visual Servoing Bateux et al. ICRA 2018

Recommend


More recommend