Visual Servoing, Intro Optimal Control Lecture 12
What will you take home today? Visual Servoing Interaction Matrix Control Law Case-Study: Learning-based approach Introduction Optimal Control Principle of Optimality Bellman Equation Deriving LQR
Camera-Robot Configurations Image from: CHANG, W., WU, C.. Hand-Eye Coordination for Robotic Assembly Tasks. International Journal of Automation and Smart Technology ,
Image-based visual servoing Current Image Goal Image
Camera Motion to Image Motion ω x ω z v x v z ω y v y Slides adapted from Peter Corke
The Image Jacobian The Image Jacobian ω ω f = f f = f v ) T v ) T ( ˙ ( ˙ u, ˙ u, ˙ ˆ ˆ ρ ρ ( X, Y, Z ) T ( X, Y, Z ) T 0 0 1 1 v x v x v v v y v y ✓ ˙ ✓ ˙ B B C C ✓ − ˆ ✓ − ˆ uv/ ˆ uv/ ˆ − ( ˆ − ( ˆ f + u 2 / ˆ f + u 2 / ˆ ◆ ◆ ◆ ◆ B B C C u u f/Z f/Z 0 0 u/Z u/Z f f f ) f ) v v v z v z B B C C = = − ˆ − ˆ f + u 2 / ˆ f + u 2 / ˆ ˆ ˆ − uv/ ˆ − uv/ ˆ B B C C v v ˙ ˙ 0 0 f/Z f/Z v/Z v/Z f f f f − u − u ω x ω x B B C C B B C C ω y ω y @ @ A A ω z ω z Slides adapted from Peter Corke Slides adapted from Peter Corke
Optical flow Patterns Slides adapted from Peter Corke
Image-based visual servoing Getting a camera velocity to minimize the error between the current and goal image Current Image Goal Image
Image-based visual servoing Current Image Goal Image J ( u, v, Z ) 0 1 v x v y B C − ˆ uv/ ˆ − ( ˆ f + u 2 / ˆ ✓ ◆ ✓ ◆ B C u ˙ f/Z 0 u/Z f f ) v v z B C = − ˆ f + u 2 / ˆ ˆ − uv/ ˆ B C v ˙ 0 f/Z v/Z f f − u ω x B C B C ω y @ A ω z Slides adapted from Peter Corke
Image-based visual servoing ˙ u 1 v x Current Image Goal Image ˙ v 1 v y J ( u 1 , v 1 , Z 1 ) ˙ u 2 v z J ( u 2 , v 2 , Z 2 ) = ˙ v 2 ω x J ( u 3 , v 3 , Z 3 ) ˙ u 3 ω y ˙ v 3 ω z
Image-based visual servoing ˙ u 1 v x ˙ v 1 v y J ( u 1 , v 1 , Z 1 ) ˙ u 2 v z = J ( u 2 , v 2 , Z 2 ) ˙ v 2 ω x J ( u 3 , v 3 , Z 3 ) ˙ u 3 ω y ˙ v 3 ω z ˙ v x u 1 ˙ v y v 1 − 1 J ( u 1 , v 1 , Z 1 ) ˙ v z u 2 J ( u 2 , v 2 , Z 2 ) = ˙ v 2 ω x J ( u 3 , v 3 , Z 3 ) ˙ u 3 ω y ˙ v 3 ω z
Desired Pixel Velocity Slides adapted from Peter Corke
Simulation Slides adapted from Peter Corke
Point Correspondences How to find them? Features, Markers
What will you take home today? Visual Servoing Interaction Matrix Control Law Case-Study: Learning-based approach Introduction Optimal Control Principle of Optimality Bellman Equation Deriving LQR
Training Deep Neural Networks for Visual Servoing Bateux et al. ICRA 2018 1. Instead of using features, use the whole image to compare to given goal image a. Challenge: Small convergence region due to non-linear cost function
Training Deep Neural Networks for Visual Servoing Bateux et al. ICRA 2018
Training Deep Neural Networks for Visual Servoing Bateux et al. ICRA 2018
What will you take home today? Visual Servoing Interaction Matrix Control Law Case-Study: Learning-based approach Introduction Optimal Control Principle of Optimality Bellman Equation Deriving LQR
So far on Control
Optimal Control and Reinforcement Learning from a unified point of view Optimal Control Problem
Trajectory Optimization and Reinforcement Learning 1. Trajectory Optimization: find a optimal trajectory given non-linear dynamics and cost 2. Reinforcement Learning: finding an optimal policy under unknown dynamics and given a reward = -cost
Principle of Optimality – Example: Graph Search problem
Forward Search
Forward Search
Backward Search
Backward Search
Principle of Optimality
Bellman Equation
Problem setup System Dynamics Cost function
Goal
Formalize Cost-to-Go / Value function
Optimal Value function = V with lowest cost
Deriving the Bellman Equation
Optimal Bellman Equation Optimal Value function Optimal Policy
Comparing Optimal Bellman and Value Function
Infinite time horizon, deterministic system
Infinite time horizon, deterministic system
Infinite time horizon, deterministic system
Finite Horizon, Stochastic system Cost function Stochastic System Dynamics
Finite Horizon, Stochastic system Value function Optimal Value function Optimal Policy
Finite Horizon, Stochastic system Bellman Equation Optimal Bellman Equation
Infinite Horizon, Stochastic system Combining formulation from infinite horizon - discrete system with stochastic system derivation
Continuous time systems Hamilton-Jacobi-Bellman Equation
How do you solve these equations?
Linear Dynamical Systems, Quadratic cost – L inear Q uadratic R egulator (LQR)
Linear Dynamical Systems, Quadratic cost – L inear Q uadratic R egulator (LQR)
Recommend
More recommend