fast harmonic mappings
play

Fast Harmonic Mappings EDEN FEDIDA HEFETZ BAR-ILAN UNIVERSITY, - PowerPoint PPT Presentation

Fast Harmonic Mappings EDEN FEDIDA HEFETZ BAR-ILAN UNIVERSITY, ISRAEL 1 Goal Find fast, locally injective harmonic mappings between shapes with low distortion. 1) Formulation of the optimization problem 2) Create custom-made solvers for the


  1. Fast Harmonic Mappings EDEN FEDIDA HEFETZ BAR-ILAN UNIVERSITY, ISRAEL 1

  2. Goal Find fast, locally injective harmonic mappings between shapes with low distortion. 1) Formulation of the optimization problem 2) Create custom-made solvers for the specific problem => Acceleration by orders of magnitude Performed on two types of harmonic mappings: 1) Planar shape deformation 2) Seamless parameterization 2

  3. Fast Planar Harmonic Deformations with Alternating Tangential Projections EDEN FEDIDA HEFETZ, EDWARD CHIEN, OFIR WEBER BAR-ILAN UNIVERSITY, ISRAEL 3

  4. The Mapping Problem ๐‘”: ๐›ป โ†’ โ„ 2 โ€ข Desirable properties: โ€ข Locally-injective โ€ข Bounded conformal distortion โ€ข Bounded isometric distortion โ€ข Real-time 4

  5. Previous Work โ€ข Cage based methods (barycentric coords): โ€ข Bounded distortion: [Hormann and Floater 2006] [Lipman 2012] [Joshi et al.2007] [Kovalsky at al. 2015] [Lipman et al. 2007] [Chen and Weber 2015] [Weber et al. 2011] [Levi and Weber 2016] [Weber et al. 2009] โ€ฆ โ€ฆ 5

  6. Notations โ€ข Planar mapping: โ€ข Distortion measures: ๐‘”: ฮฉ โ†’ โ„ 2 โ€ข Jacobian: โ€ข Singular values of ๐พ ๐‘” ๐พ ๐‘” = ๐‘ โˆ’๐‘ + ๐‘‘ ๐‘’ ๐‘ ๐‘ ๐‘’ โˆ’๐‘‘ Similarity Anti-similarity โ€ข Complex Wirtinger derivatives: 0 โ‰ค ๐œ ๐‘ โ‰ค ๐œ ๐‘ ๐‘” ๐‘จ = ๐‘ + ๐‘—๐‘ ๐œ ๐‘ = ๐‘” ๐‘จ + ๐‘” าง ๐‘จ ๐‘” ๐‘จ = ๐‘‘ + ๐‘—๐‘’ ๐œ ๐‘ = ๐‘” ๐‘จ โˆ’ ๐‘” าง ๐‘จ 6

  7. Bounded Distortion Harmonic Mappings โ€ข The BD space : โˆ€๐‘จ โˆˆ ๐›ป ๐œ ๐‘ โˆ’๐œ ๐‘ ๐‘” เดค ๐‘จ ๐‘™ ๐‘จ = ๐œ ๐‘ +๐œ ๐‘ = ๐‘จ โ‰ค ๐ท ๐‘™ conformal ๐‘” ๐œ ๐‘ z = ๐‘” ๐‘จ + ๐‘” าง ๐‘จ โ‰ค ๐ท ๐‘ ๐Š = ๐ง๐›๐ฒ ๐‰ ๐’ƒ , ๐Ÿ isometric ๐œ ๐‘ z = ๐‘” ๐‘จ โˆ’ ๐‘” าง ๐‘จ โ‰ฅ ๐ท ๐‘ ๐‰ ๐’„ โ€ข Non-convex space ๐‘ซ ๐’ƒ = ๐Ÿ‘. ๐Ÿ” ๐‘ซ ๐’ƒ = ๐Ÿ๐Ÿ Source โ€ข Harmonic mapping enforce bounds only on ๐œ–ฮฉ [Chen and Weber 2015] 7

  8. The โ„’ ๐œ‰ Space [Levi and Weber 2016] โ€ข Change of variables: ๐ƒ = ๐’ˆ ๐’œ BD โ„’ ๐œ‰ ๐’Ž = ๐’Ž๐’‘๐’‰ ๐’ˆ ๐’œ ๐’ˆ ๐’œ โ„’ ๐œ‰ BD ๐’ˆ ๐’œ = ๐’‡ ๐’Ž ๐’œ = ๐ƒ๐’‡ ๐’Ž ๐’ˆ เดค โ€ข BD homeomorphic to โ„’ ๐œ‰ 8

  9. The โ„’ ๐œ‰ Space โ€ข Near convex space โˆ€๐‘ฅ โˆˆ ๐œ–๐›ป ๐‘™ ๐‘ฅ = ๐œ‰(๐‘ฅ) โ‰ค ๐ท ๐‘™ ๐œ ๐‘ w = ๐‘“ ๐‘†๐‘“(๐‘š(๐‘ฅ)) (1 + ๐œ‰(๐‘ฅ) ) โ‰ค ๐ท ๐‘ ๐œ ๐‘ w = ๐‘“ ๐‘†๐‘“ ๐‘š ๐‘ฅ (1 โˆ’ ๐œ‰(๐‘ฅ) ) โ‰ฅ ๐ท ๐‘ Convex 9

  10. Discretization โ€ข Enforce distortion constraints on m densely sampled points n vertices โ€ข Use Cauchy complex barycentric coordinate : ๐‘œ ๐‘œ ๐‘ก ๐‘˜ , ๐‘ข ๐‘˜ โˆˆ โ„‚ ๐‘š ๐‘จ = เท ๐‘ก ๐‘˜ ๐ท ๐‘˜ ๐‘จ & ๐œ‰ ๐‘จ = เท ๐‘ข ๐‘˜ ๐ท ๐‘˜ ๐‘จ ๐‘˜=1 ๐‘˜=1 โ€ข Subspace of holomorphic functions โ€ข 4n-dimensional m sample points Affine 10

  11. Our problem Convex Affine 4m-dimensional 4n-dimensional โˆฉ convex subspace of โ„ 4๐‘› Harmonic mapping Bounded distortion 11

  12. Our problem โ€ข Input : ๐‘š and ๐œ‰ values from cage data โ€ข Find the closest point in the intersection of an affine space and a convex space A ๐‘ ๐‘— B 12

  13. Alternating Projections MAP ATP ๐ผ ๐‘— 13

  14. Alternating Projections MAP ATP [Von Neumann 1950] Proof of convergence [Bauschke and Borwein 1993] 14

  15. Large-Scale Bounded Distortion Mappings [Kovalsky et al. 2015] โ€ข Alternating Projections between an affine space and non-convex space โ€ข No convergence guarantees โ€ข Upon convergence, not necessarily locally injective โ€ข Only bounds the conformal distortion and not isometric 15

  16. Gathering Input Data โ€ข Extract ๐‘š and ๐œ‰ values from cage data โ€ข Linear transformations ๐‘“ ๐‘— โŸผ เท ๐‘“ ๐‘— that preserves the unit normal ๐’‡ ๐’‹โˆ’๐Ÿ เทŸ ๐’‡ ๐’‹โˆ’๐Ÿ ๐’‡ ๐’‹ ๐’‡ ๐’‹ เท 1 1 1 2 ๐’‡ ๐’‹+๐Ÿ เทŸ ๐’‡ ๐’‹+๐Ÿ 16

  17. Implementation โ€ข Local : โ€ข Project each sample point to the bounded distortion space โ€ข GPU kernel โ€ข Global : โ€ข Linear + fixed left hand side โ€ข GPU - Matrix-Vector products using cuBLAS 17

  18. Results 18

  19. Near-optimality of alternating projection methods source MOSEK ATP MAP 3 fps 35 fps 0.005 fps 19

  20. Near-optimality of alternating projection methods source MAP ATP MOSEK 15 fps 140 fps 0.2 fps 20

  21. Speedup ร— ๐Ÿ๐Ÿ ๐Ÿ’ ~170 ร— ๐Ÿ’ โˆ™ ๐Ÿ๐Ÿ ๐Ÿ’ ~30 21

  22. ๐ท ๐‘ = = 5 5 ๐ท ๐‘ = = 0.2 ๐Š ๐Š = ๐ง๐›๐ฒ ๐‰ ๐’ƒ , ๐Ÿ ๐‰ ๐’„ 22

  23. Source Cauchy Coords [Kovalsky et al. 2015] ATP 23

  24. Summary โ€ข Planar deformation โ€ข GPU accelerated โ€“ speedup of 3 ร— 10 3 โ€ข Guaranteed local injectivity and bounded distortion โ€ข General proof of convergence โ€ข Future Work: โ€ข Positional constraints โ€ข Extension to parametrization of surfaces 24

  25. A Subspace Method for Fast Locally Injective Harmonic Mapping EDEN FEDIDA HEFETZ, EDWARD CHIEN, OFIR WEBER BAR-ILAN UNIVERSITY, ISRAEL 25

  26. The Parametrization Problem โ€ข Given a 3-D triangular mesh S, find a map ๐‘” โˆถ ๐‘‡ โ†’ ฮฉ such that ฮฉ โŠ‚ ๐‘† 2 โ€ข Desirable properties: โ€ข Locally injectivity โ€ข Low distortion โ€ข Fast computation 26

  27. Motivation โ€ข Texture mapping โ€ข Mesh correspondences โ€ข Remeshing 27/36

  28. Credit: Hans-Christian Ebke Quad Remeshing Example 28

  29. Previous Work โ€ข Linear methods โ€ข Nonconvex energy-based methods LSCM [Lรฉvy et al. โ€˜ 02] CM [Schtengel et al.] Killing [Claici et al.] Angle-Based [Zayer et al. โ€˜ 07] SLIM [Rabinovich et al.] Conformal Flattening [Ben-Chen et al. โ€˜ 08] AQP [Kovalsky et al.] โ€ฆ โ€ฆ We aim for the speed of a linear method and the robustness of a nonconvex method 29

  30. Tutte โ€™ s embedding โ€ข Discrete harmonic function Convex combination map Global bijection Convex boundary 30

  31. Global Parametrization Mesh cut to a disk along a seam graph ๐ป ๐‘ก 1) 2) Resulting disk mapped to plane 3) Seam edge copies have isometric images ๐’˜ ๐’‹ ๐’„ ๐’‡ ๐’‹๐’Œ ๐’œ ๐’Œ ๐’„ ) ๐’ˆ(๐‘“ ๐‘—๐‘˜ ๐’˜ ๐’Œ ๐’œ ๐’‹ ๐’ƒ ) ๐’ˆ(๐’‡ ๐’‹๐’Œ ๐’ƒ ๐’œ ๐’Œ Seamless parametrization: The rotational part of the isometry is a rotation by some multiple of ๐œŒ/2 . 31

  32. HGP [Bright et al. โ€˜ 17] Linear system: ๐œŒ๐‘ ๐‘—๐‘˜ = ๐‘“ ๐‘— ๐‘ ๐‘ 2 ๐‘” ๐‘“ ๐‘—๐‘˜ 1 . ๐‘” ๐‘“ ๐‘—๐‘˜ , ๐‘“ ij โˆˆ ๐ป ๐‘ก 2. 3. 32

  33. HGP [Bright et al. โ€˜ 17] Linear system: ๐œŒ๐‘ ๐‘—๐‘˜ = ๐‘“ ๐‘— ๐‘ ๐‘ 2 ๐‘” ๐‘“ ๐‘—๐‘˜ 1 . ๐‘” ๐‘“ ๐‘—๐‘˜ , ๐‘“ ij โˆˆ ๐ป ๐‘ก 2. 3. 33

  34. HGP [Bright et al. โ€˜ 17] Linear system: ๐œŒ๐‘ ๐‘—๐‘˜ = ๐‘“ ๐‘— ๐‘ ๐‘ 2 ๐‘” ๐‘“ ๐‘—๐‘˜ 1 . ๐‘” ๐‘“ ๐‘—๐‘˜ , ๐‘“ ij โˆˆ ๐ป ๐‘ก 2. 3. 34

  35. HGP [Bright et al. โ€˜ 17] HGP linear system Locally injective map Boundary and cone triangles are well-behaved i > f าง i f z , ๐‘— โˆˆ ๐‘ˆ ๐‘‘๐‘ ๐‘จ [Lipman 2012] Frame field from [Bommes et al. 2009] 35

  36. Subspace construction Linear part of HGP: ๐‘ƒ(|๐ท|) Add interpolation constraints to complete the system dimension: 36

  37. Subspace construction 0 ๐ฟ๐‘จ = ๐‘‘ ๐‘—๐‘œ๐‘ข 1 โ‹ฏ 0 0 ๐ฟ โˆ’1 ๐‘‘ ๐‘š๐‘—๐‘œ ๐‘‘ ๐‘—๐‘œ๐‘ข = ๐‘จ , ๐‘‘ ๐‘š๐‘—๐‘œ = โ‹ฎ 1 โ‹ฎ 0 โ‹ฏ 1 ๐ถ ๐‘‘ z = ฯƒ ๐‘—=1 ๐‘‘ ๐‘—๐‘œ๐‘ข = ๐‘จ ๐‘ ๐‘— ๐‘‘ ๐‘—๐‘œ๐‘ข๐‘— ๐‘ 1 ๐‘ 2 โ‹ฏ ๐‘ ๐‘‘ For ๐‘ ๐‘— , extract a column of ๐ฟ โˆ’1 ! By HGP theorem, only need to extract entries near cones and boundaries! 37

  38. Subspace construction -1 โ€ข Only need ๐‘ƒ( ๐ท ร— ๐ท ) elements of ๐ฟ โˆ’1 โ€ข Use selective inverse from PARDISO [KLS13, VCKS17] โ€ข Detailed instructions for PARDISO use. => Linear subspace with dimension ๐‘ƒ( ๐ท ) Affine 38

  39. Boundary and cone triangles 1 , ๐‘— โˆˆ ๐‘ˆ ๐‘‘๐‘ (2) (2) 1 Convex 39

  40. Our problem Convex Affine Dimension: 2 ๐‘ˆ ๐ท๐ถ Dimension: ๐‘ƒ( ๐ท ) โˆฉ ๐ผ ๐‘— Harmonic mapping Locally injective 40

  41. Projected Newton โ€ข Symmetric Dirichlet energy is optimized โ€ข Nonconvex, project Hessians to the PSD cone โ€ข [Chen & Weber 2017] 41

  42. Results! โ€ข Comparable quality to HGP results โ€ข Fairly robust results: 66 of 77 successful on a benchmark โ€ข One order of magnitude faster than HGP; comparable to 1-2 linear solves (next slide) 42

  43. Timing Results 100,000.00 10,000.00 Runtime (s) 1,000.00 100.00 10.00 1.00 0.10 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 # Triangles Subspace Method HGP [Chien et al. 2016] 43

  44. Algorithm Parts Timing 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 1 2 3 4 Series1 Series2 Series3 44

  45. Summary โ€ข Surface parametrization โ€ข Speedup by order of magnitude โ€ข Locally injective โ€ข Analysis of linear system from HGP โ€ข Future Work: โ€ข Higher genus โ€ข Convexication frames 45

  46. Conclusion โ–ช Two methods have been accelerated: โ–ช Input: flat 2D manifold โ–ช Input: curved 2D manifold โ–ช Continuous functions โ–ช Triangular mesh discretization โ–ช Convex characterization of the โ–ช Non-convex space space. โ–ช May not be feasible โ–ช Solution is guaranteed 46

  47. The End 47

Recommend


More recommend