Fast Harmonic Mappings EDEN FEDIDA HEFETZ BAR-ILAN UNIVERSITY, ISRAEL 1
Goal Find fast, locally injective harmonic mappings between shapes with low distortion. 1) Formulation of the optimization problem 2) Create custom-made solvers for the specific problem => Acceleration by orders of magnitude Performed on two types of harmonic mappings: 1) Planar shape deformation 2) Seamless parameterization 2
Fast Planar Harmonic Deformations with Alternating Tangential Projections EDEN FEDIDA HEFETZ, EDWARD CHIEN, OFIR WEBER BAR-ILAN UNIVERSITY, ISRAEL 3
The Mapping Problem ๐: ๐ป โ โ 2 โข Desirable properties: โข Locally-injective โข Bounded conformal distortion โข Bounded isometric distortion โข Real-time 4
Previous Work โข Cage based methods (barycentric coords): โข Bounded distortion: [Hormann and Floater 2006] [Lipman 2012] [Joshi et al.2007] [Kovalsky at al. 2015] [Lipman et al. 2007] [Chen and Weber 2015] [Weber et al. 2011] [Levi and Weber 2016] [Weber et al. 2009] โฆ โฆ 5
Notations โข Planar mapping: โข Distortion measures: ๐: ฮฉ โ โ 2 โข Jacobian: โข Singular values of ๐พ ๐ ๐พ ๐ = ๐ โ๐ + ๐ ๐ ๐ ๐ ๐ โ๐ Similarity Anti-similarity โข Complex Wirtinger derivatives: 0 โค ๐ ๐ โค ๐ ๐ ๐ ๐จ = ๐ + ๐๐ ๐ ๐ = ๐ ๐จ + ๐ าง ๐จ ๐ ๐จ = ๐ + ๐๐ ๐ ๐ = ๐ ๐จ โ ๐ าง ๐จ 6
Bounded Distortion Harmonic Mappings โข The BD space : โ๐จ โ ๐ป ๐ ๐ โ๐ ๐ ๐ เดค ๐จ ๐ ๐จ = ๐ ๐ +๐ ๐ = ๐จ โค ๐ท ๐ conformal ๐ ๐ ๐ z = ๐ ๐จ + ๐ าง ๐จ โค ๐ท ๐ ๐ = ๐ง๐๐ฒ ๐ ๐ , ๐ isometric ๐ ๐ z = ๐ ๐จ โ ๐ าง ๐จ โฅ ๐ท ๐ ๐ ๐ โข Non-convex space ๐ซ ๐ = ๐. ๐ ๐ซ ๐ = ๐๐ Source โข Harmonic mapping enforce bounds only on ๐ฮฉ [Chen and Weber 2015] 7
The โ ๐ Space [Levi and Weber 2016] โข Change of variables: ๐ = ๐ ๐ BD โ ๐ ๐ = ๐๐๐ ๐ ๐ ๐ ๐ โ ๐ BD ๐ ๐ = ๐ ๐ ๐ = ๐๐ ๐ ๐ เดค โข BD homeomorphic to โ ๐ 8
The โ ๐ Space โข Near convex space โ๐ฅ โ ๐๐ป ๐ ๐ฅ = ๐(๐ฅ) โค ๐ท ๐ ๐ ๐ w = ๐ ๐๐(๐(๐ฅ)) (1 + ๐(๐ฅ) ) โค ๐ท ๐ ๐ ๐ w = ๐ ๐๐ ๐ ๐ฅ (1 โ ๐(๐ฅ) ) โฅ ๐ท ๐ Convex 9
Discretization โข Enforce distortion constraints on m densely sampled points n vertices โข Use Cauchy complex barycentric coordinate : ๐ ๐ ๐ก ๐ , ๐ข ๐ โ โ ๐ ๐จ = เท ๐ก ๐ ๐ท ๐ ๐จ & ๐ ๐จ = เท ๐ข ๐ ๐ท ๐ ๐จ ๐=1 ๐=1 โข Subspace of holomorphic functions โข 4n-dimensional m sample points Affine 10
Our problem Convex Affine 4m-dimensional 4n-dimensional โฉ convex subspace of โ 4๐ Harmonic mapping Bounded distortion 11
Our problem โข Input : ๐ and ๐ values from cage data โข Find the closest point in the intersection of an affine space and a convex space A ๐ ๐ B 12
Alternating Projections MAP ATP ๐ผ ๐ 13
Alternating Projections MAP ATP [Von Neumann 1950] Proof of convergence [Bauschke and Borwein 1993] 14
Large-Scale Bounded Distortion Mappings [Kovalsky et al. 2015] โข Alternating Projections between an affine space and non-convex space โข No convergence guarantees โข Upon convergence, not necessarily locally injective โข Only bounds the conformal distortion and not isometric 15
Gathering Input Data โข Extract ๐ and ๐ values from cage data โข Linear transformations ๐ ๐ โผ เท ๐ ๐ that preserves the unit normal ๐ ๐โ๐ เท ๐ ๐โ๐ ๐ ๐ ๐ ๐ เท 1 1 1 2 ๐ ๐+๐ เท ๐ ๐+๐ 16
Implementation โข Local : โข Project each sample point to the bounded distortion space โข GPU kernel โข Global : โข Linear + fixed left hand side โข GPU - Matrix-Vector products using cuBLAS 17
Results 18
Near-optimality of alternating projection methods source MOSEK ATP MAP 3 fps 35 fps 0.005 fps 19
Near-optimality of alternating projection methods source MAP ATP MOSEK 15 fps 140 fps 0.2 fps 20
Speedup ร ๐๐ ๐ ~170 ร ๐ โ ๐๐ ๐ ~30 21
๐ท ๐ = = 5 5 ๐ท ๐ = = 0.2 ๐ ๐ = ๐ง๐๐ฒ ๐ ๐ , ๐ ๐ ๐ 22
Source Cauchy Coords [Kovalsky et al. 2015] ATP 23
Summary โข Planar deformation โข GPU accelerated โ speedup of 3 ร 10 3 โข Guaranteed local injectivity and bounded distortion โข General proof of convergence โข Future Work: โข Positional constraints โข Extension to parametrization of surfaces 24
A Subspace Method for Fast Locally Injective Harmonic Mapping EDEN FEDIDA HEFETZ, EDWARD CHIEN, OFIR WEBER BAR-ILAN UNIVERSITY, ISRAEL 25
The Parametrization Problem โข Given a 3-D triangular mesh S, find a map ๐ โถ ๐ โ ฮฉ such that ฮฉ โ ๐ 2 โข Desirable properties: โข Locally injectivity โข Low distortion โข Fast computation 26
Motivation โข Texture mapping โข Mesh correspondences โข Remeshing 27/36
Credit: Hans-Christian Ebke Quad Remeshing Example 28
Previous Work โข Linear methods โข Nonconvex energy-based methods LSCM [Lรฉvy et al. โ 02] CM [Schtengel et al.] Killing [Claici et al.] Angle-Based [Zayer et al. โ 07] SLIM [Rabinovich et al.] Conformal Flattening [Ben-Chen et al. โ 08] AQP [Kovalsky et al.] โฆ โฆ We aim for the speed of a linear method and the robustness of a nonconvex method 29
Tutte โ s embedding โข Discrete harmonic function Convex combination map Global bijection Convex boundary 30
Global Parametrization Mesh cut to a disk along a seam graph ๐ป ๐ก 1) 2) Resulting disk mapped to plane 3) Seam edge copies have isometric images ๐ ๐ ๐ ๐ ๐๐ ๐ ๐ ๐ ) ๐(๐ ๐๐ ๐ ๐ ๐ ๐ ๐ ) ๐(๐ ๐๐ ๐ ๐ ๐ Seamless parametrization: The rotational part of the isometry is a rotation by some multiple of ๐/2 . 31
HGP [Bright et al. โ 17] Linear system: ๐๐ ๐๐ = ๐ ๐ ๐ ๐ 2 ๐ ๐ ๐๐ 1 . ๐ ๐ ๐๐ , ๐ ij โ ๐ป ๐ก 2. 3. 32
HGP [Bright et al. โ 17] Linear system: ๐๐ ๐๐ = ๐ ๐ ๐ ๐ 2 ๐ ๐ ๐๐ 1 . ๐ ๐ ๐๐ , ๐ ij โ ๐ป ๐ก 2. 3. 33
HGP [Bright et al. โ 17] Linear system: ๐๐ ๐๐ = ๐ ๐ ๐ ๐ 2 ๐ ๐ ๐๐ 1 . ๐ ๐ ๐๐ , ๐ ij โ ๐ป ๐ก 2. 3. 34
HGP [Bright et al. โ 17] HGP linear system Locally injective map Boundary and cone triangles are well-behaved i > f าง i f z , ๐ โ ๐ ๐๐ ๐จ [Lipman 2012] Frame field from [Bommes et al. 2009] 35
Subspace construction Linear part of HGP: ๐(|๐ท|) Add interpolation constraints to complete the system dimension: 36
Subspace construction 0 ๐ฟ๐จ = ๐ ๐๐๐ข 1 โฏ 0 0 ๐ฟ โ1 ๐ ๐๐๐ ๐ ๐๐๐ข = ๐จ , ๐ ๐๐๐ = โฎ 1 โฎ 0 โฏ 1 ๐ถ ๐ z = ฯ ๐=1 ๐ ๐๐๐ข = ๐จ ๐ ๐ ๐ ๐๐๐ข๐ ๐ 1 ๐ 2 โฏ ๐ ๐ For ๐ ๐ , extract a column of ๐ฟ โ1 ! By HGP theorem, only need to extract entries near cones and boundaries! 37
Subspace construction -1 โข Only need ๐( ๐ท ร ๐ท ) elements of ๐ฟ โ1 โข Use selective inverse from PARDISO [KLS13, VCKS17] โข Detailed instructions for PARDISO use. => Linear subspace with dimension ๐( ๐ท ) Affine 38
Boundary and cone triangles 1 , ๐ โ ๐ ๐๐ (2) (2) 1 Convex 39
Our problem Convex Affine Dimension: 2 ๐ ๐ท๐ถ Dimension: ๐( ๐ท ) โฉ ๐ผ ๐ Harmonic mapping Locally injective 40
Projected Newton โข Symmetric Dirichlet energy is optimized โข Nonconvex, project Hessians to the PSD cone โข [Chen & Weber 2017] 41
Results! โข Comparable quality to HGP results โข Fairly robust results: 66 of 77 successful on a benchmark โข One order of magnitude faster than HGP; comparable to 1-2 linear solves (next slide) 42
Timing Results 100,000.00 10,000.00 Runtime (s) 1,000.00 100.00 10.00 1.00 0.10 0 20,000 40,000 60,000 80,000 100,000 120,000 140,000 160,000 # Triangles Subspace Method HGP [Chien et al. 2016] 43
Algorithm Parts Timing 4.50 4.00 3.50 3.00 2.50 2.00 1.50 1.00 0.50 0.00 1 2 3 4 Series1 Series2 Series3 44
Summary โข Surface parametrization โข Speedup by order of magnitude โข Locally injective โข Analysis of linear system from HGP โข Future Work: โข Higher genus โข Convexication frames 45
Conclusion โช Two methods have been accelerated: โช Input: flat 2D manifold โช Input: curved 2D manifold โช Continuous functions โช Triangular mesh discretization โช Convex characterization of the โช Non-convex space space. โช May not be feasible โช Solution is guaranteed 46
The End 47
Recommend
More recommend