FACET The Facility for Advanced aCcelerator Experimental Tests Mark Hogan SLAC National Accelerator Laboratory DESY & MPI Visit March 2012
Advanced Accelerator Research @ SLAC q High energy particle accelerators are the ultimate microscopes § Reveal fundamental particles and forces in the universe at the energy frontier § Enable x-ray lasers to look at the smallest elements of life q Advanced Accelerator Department’s goal is to shrink the size and cost of these accelerators by factors of 10-1000 q Combine SLAC accelerators with lasers, plasmas, high-power microwaves, and lithography to develop new generation of particle accelerators and sources ~"24"cm" λ = 800 nm Extremely high fields in Telecom and Semiconductor New designs and 1,000°C lithium plasmas have tools used to make an materials push metal doubled the energy of the 3km ‘accelerator on a chip’ structures to the limit SLAC linac in just 1 meter M.J. Hogan, FACET for DESY & MPI – March 2012 2
Wakefield Acceleration @ SLAC q SLAC/UCLA/USC FFTB experiments 1998 - 2006 § Plasma Wakefield Acceleration of electrons over meter scales • 50GeV/m accelerating gradient • Total energy gain of 43GeV § First plasma acceleration of positrons § Systematic studies of integrated & time dependent focusing • electrons (extended propagation, emittance preservation @ 10 -4 m) • positrons (halo formation, emittance growth) § Refraction of electron beam at plasma boundary § Betatron radiation from strong plasma focusing • x-rays @ 10 14 e - /cc (kT/m) • gammas (e + production) @ 10 17 e - /cc (MT/m) § Dielectric Wakefield Acceleration • Proof of principle studies of material breakdown threshold – 14GeV/m induced catastrophic breakdown in 1cm long, 100 µ m diameter fused Si tubes (we turned the dielectrics into plasmas!) q 2008 DOE Recognized the need for an ‘Advanced Plasma Acceleration Facility’ M.J. Hogan, FACET for DESY & MPI – March 2012 3
FACET: Facility for Advanced Accelerator Experimental Tests New Installation @ 2km point of SLAC linac: • Chicane for bunch compression • Final Focus for small spots at the IP Experiments • Experimental Area (25m) here In the last year: § Finished Construction § 3 Months of User Assisted Commissioning June-Sept. 2011 § Reached CD4 December 2011 § FACET is now a National User A Unique Facility Facility for Accelerator Science § Commissioning now for first User Runs this summer M.J. Hogan, FACET for DESY & MPI – March 2012 4
The Most Important Capability is the Beam q Summer 2011 commissioning was first hard push since the end of FFTB/PEP-II programs in 2006/2007 q Much progress, but still work to do (parameters, stability) Parameter Design Value at IP Goals for 2012 User Runs Energy (GeV) 23 GeV 23 GeV RMS Energy Spread (%) 4 Full Width 4 Full Width Charge per pulse 2e10 e - (3.2 nC) ü Bunch length σ z (µm) 15-40 20 Beam size σ x x σ y (µm) 14 x 6 20 x 20 Repetition Rate (Hz) 1-30 1-10 (ALARA) Particle e - or e + e - only 5 M.J. Hogan, FACET for DESY & MPI – March 2012
Currently Approved Experiments q Proposals are reviewed by SAREC and time allocated by Accelerator Research Division Director § E-200: Plasma Wakefield Acceleration • MPI, UCLA, SLAC § E-201: Dielectric Wakefield Acceleration • ANL, Euclid, Manhattanville College, MIT, MPI, UCLA, RadiaBeam, SLAC § E-202: Ultrafast Processes in Materials (E&M switching) • Hitachi, IBM, University of Regensburg, SLAC/Stanford § E-203: Coherent Smith-Purcell Radiation • Diamond Light Source, John Adams Institute, LAL, SLAC § T-500: THz • SLAC/Stanford q Hardware installed and commissioned last summer in conjunction with beamline commissioning q First User Run April 2012 M.J. Hogan, FACET for DESY & MPI – March 2012 6
~0.25 Meters Ramped Bunch Production TORO LI19 1988 Toroid BNDS LI20 1990 B1-L, LGPS 1990 FACET Experimental Area DRAFT Beam Direction ~35 Meter LION ~35 Meter LION TORO LI20 2040 Toroid Drive–Witness or PROF LI20 2041 Profile Monitor QUAS LI20 2061 Q1E-L, LGPS 2060 Q1EL_BOOST-PS, LGPS 2061 BPMS LI20 2050 COLL LI20 2069 Collimator: Cnotch Collimators COLL LI20 2072 HCOLL COLL LI20 2082 VCOLL COLL LI20 2085 HCOLL YCOR LI20 2087 YC1E XCOR LI20 2096 XC1E BNDS LI20 2110 B2E-L, LGPS 2110 QUAS LI20 2131 Q2E-L, LGPS 2130 Q2E-L _BOOST-PS, LGPS 2131 SXTS LI20 2145 S1E-L, LGPS 2145 BPMS LI20 2147 QUAS LI20 2151 Q3E-L, LGPS 2150 PPS Zone Sector 19 Q3E-L_BOOST-PS, LGPS 2151 QUAS LI20 2161 Q3E-L2, LGPS 2150 Q3E_L_BOOST-PS, LGPS 2151 SXTS LI20 2165 S2E-L, LGPS 2165 XCOR LI20 2176 XC2E SXTS LI20 2195 S3E-L, LGPS 2195 QUAS LI20 2201 Q4E-L, LGPS 2200 Q4E_L_BOOST-PS, LGPS 2201 QUAS LI20 2211 Q4E-L2, LGPS 2200 Q4E_L_BOOST-PS, LGPS 2201 QUAS LI20 2221 Q4E-L3, LGPS 2200 Q4E_L_BOOST-PS, LGPS 2201 BPMS LI20 2223 SXTS LI20 2225 S3E-L2, LGPS 2195 YCOR LI20 2227 YC2E QUAS LI20 2231 Q5E-L, LGPS 2230 FACET Sector 20 Beamline BPMS LI20 2235 Q5E_L_BOOST-PS, LGPS 2231 Chicane, Final Focus and Experimental Area BNDS LI20 2240 B3E-L, LGPS 2240 BPMS LI20 2245 QUAS LI20 2251 Q6E, LGPS 2251 BNDS LI20 2260 B3E-R, LGPS 2240 BPMS LI20 2261 QUAS LI20 2262 Q5E-R, , LGPS 2230 Q5E_R_BOOST-PS, LGPS 2262 YCOR LI20 2267 YC3E SXTS LI20 2275 S3E-R, LGPS 2275 QUAS LI20 2281 Q4E-R, LGPS 2200 BPMS LI20 2278 Q4E_R_BOOST-PS, LGPS 2281 QUAS LI20 2291 Q4E-R2, , LGPS 2200 Q4E_R_BOOST-PS, LGPS 2281 QUAS LI20 2301 Q4E-R3, LGPS 2200 March 22, 2011 Q4E_R_BOOST-PS, LGPS 2281 SLAC-I-040-202-001-59-R000 8.2 Page 1 of 3 M.J. Hogan, FACET for DESY & MPI – March 2012 SXTS LI20 2305 S3E-R2, LGPS 2275 XCOR LI20 2326 XC3E ~35 Meter LION ~35 Meter LION SXTS LI20 2335 S2E-R, LGPS 2335 QUAS LI20 2341 Q3E-R, LGPS 2150 Fully compressed & Q3E_R_BOOST-PS, LGPS 2341 QUAS LI20 2351 Q3E-R2, LGPS 2150 Q3E_R_BOOST-PS, LGPS 2341 BPMS LI20 2360 SXTS LI20 2365 S1E-R, LGPS 2365 QUAS LI20 2371 Q2E-R, LGPS 2130 elliptical beam Q2E_R_BOOST-PS, LGPS 2371 BNDS LI20 2390 B2E-R, LGPS 2110 XCOR LI20 2396 XC4E YCOR LI20 2397 YC4E WIG 1E Half-pole LGPS LI20 2420 WIG 2E + BTRM LI20 2420 THz PPS Zone Sector 19-20 BNDS LI20 2410 WIG 1E Half-pole In MAD BNDS LI20 2420 BNDS LI20 2430 BPMS LI20 2445 YAG LI20 2432 YAG screen QUAS LI20 2441 Q1E-R, LGPS 2060 Q1E_R_BOOST-PS, LGPS 2441 Three Optical Tables = Experimental Areas TORO LI20 2452 Toroid BNDS LI20 3000 B1-R, LGPS 1990 QUAS LI20 3011 QFF1, LGPS 3011 BPMS LI20 3013 YCOR LI20 3017 YC1FF XCOR LI20 3026 XC1FF QUAS LI20 3031 QFF2, LGPS 3031 BPMS LI20 3036 QUAS LI20 3041 QFF2-2, LGPS 3031 QUAS LI20 3051 QFF2-3, LGPS 3031 YCOR LI20 3057 YC2FF PYRO LI20 3070 BLM Pyr001 Pyro Detectors PYRO LI20 3075 BLM Pyr002 Fully Compressed & XCOR LI20 3086 XC3FF QUAS LI20 3091 QFF4, LGPS 3091 BPMS LI20 3101 QUAS LI20 3111 QFF4-2, LGPS 3091 XCOR LI20 3116 XC4FF Tightest Focus March 22, 2011 SLAC-I-040-202-001-59-R000 QUAS LI20 3141 QFF5, LGPS 3141 BPMS LI20 3120 (inside Quad) 8.2 Page 2 of 3 ~35 Meter LION YCOR LI20 3147 YC4FF ~35 Meter LION QUAS LI20 3151 QFF6, LGPS 3151 BPMS LI20 3156 IP PROF LI20 3158 Profile Monitor (OTR) Be W 3160 Be Window TORO LI20 3163 Toroid WIRE LI20 3179 Wire Scanner IP Interaction point Dispersed in Energy PROF LI20 3206 Profile Monitor (OTR) Be W 3208 Be Window Beam Dump QUAS LI20 3261 QS1, LGPS 3261 BPMS LI20 3265 PPS Zone Sector 20 QUAS LI20 3311 QS2, LGPS 3311 BPMS LI20 3315 BNDS LI20 3330 B5D36, LGPS 3330 BPMS LI20 3340 PROF LI20 3475 Profile Monitor (Phospher) 7 March 22, 2011 Main Beam Dump SLAC-I-040-202-001-59-R000 8.2 Page 3 of 3
Experimental Installation OTR and bunch Plasma Profile Sample Sample length monitor Experiment OTR measurement chamber chamber experiment 8 M.J. Hogan, FACET for DESY & MPI – March 2012
The Beam Driven Plasma Wakefield Accelerator ~1m ~100 µ m * Two-beam, co-linear, plasma-based accelerator * Plasma wave/wake excited by relativistic particle bunch * Deceleration, acceleration, focusing by plasma * Accelerating field/gradient scales as n e1/2 * Typical: n e ≈ 10 17 cm -3 , λ p ≈ 100 µ m, G>MT/m, E>10 GV/m * High-gradient, high-efficiency energy transformer * “Blow-out” regime when n b /n p >> 1 9 M.J. Hogan, FACET for DESY & MPI – March 2012
E200: Plasma Wakefield Acceleration q Accelerating gradients > 10GeV/m, Focusing fields > 1 MT/m q Meter scale, high density field ionized plasmas (LI, Cs, Rb) q Demonstrate single stage plasma accelerator: meter scale, high gradient, preserved emittance, low energy spread, efficiency q First experiments (2012) will quantify head erosion with single high-current bunches q Follow on experiments (2012-2013) will use notch collimator to produce independent drive & witness bunch q Next phase will use pre-ionized plasmas and tailored profiles to maximize single stage performance: total energy gain, efficiency q Betatron & Synchrotron radiation, instability studies Add the notch collimator upstream... Witness Bunch ...over-compress to get two bunches at the IP (S20 Chicane R56 = 10mm) Drive Bunch M.J. Hogan, FACET for DESY & MPI – March 2012 10 33
Recommend
More recommend